DOI QR코드

DOI QR Code

Product Images Attracting Attention: Eye-tracking Analysis

  • Pavel Shin (School of Business, Yonsei University) ;
  • Kil-Soo Suh (School of Business, Yonsei University) ;
  • Hyunjeong Kang (College of Business Administration, Hongik University)
  • Received : 2019.11.10
  • Accepted : 2019.11.28
  • Published : 2019.12.31

Abstract

This study examined the impact of various product photo features on the attention of potential consumers in online apparel retailers' environment. Recently, the method of apparel's product photo representation in online shopping stores has been changed a lot from the classic product photos in the early days. In order to investigate if this shift is effective in attracting consumers' attention, we examined the related theory and verified its effect through laboratory experiments. In particular, experiment data was collected and analyzed using eye tracking technology. According to the results of this study, it was shown that the product photos with asymmetry are more attractive than symmetrical photos, well emphasized object within a photo more attractive than partially emphasized, smiling faces are more attractive for customer than emotionless and sad, and photos with uncentered models focus more consumer's attention than photos with model in the center. These results are expected to help design internet shopping stores to gaze more customers' attention.

Keywords

Acknowledgement

This research was supported by the Yonsei University Research Fund of 2018 (2018-22-0119).

References

  1. Arapakis, I., Lalmas, M., Cambazoglu, B. B., Marcos, M.-C., and Jose, J. M. (2014). User engagement in online News: Under the scope of sentiment, interest, affect, and gaze. Journal of the Association for Information Science and Technology, 65(10), 1988-2005.  https://doi.org/10.1002/asi.23096
  2. Agrawal, A., Premachandran, V., and Kakarala, R. (2014). Rating Image Aesthetics Using a Crowd Sourcing Approach. In: Huang F., Sugimoto A. (eds) Image and Video Technology - PSIVT 2013 Workshops. PSIVT 2013. Lecture Notes in Computer Science, vol 8334. Springer, Berlin, Heidelberg. 
  3. Bakhshi, S., et al., (2014). Faces engage us: Photos with faces attract more likes and comments on instagram. CHI 2014, One of a CHInd, Toronto, ON, Canada. 
  4. Bassett, D., and Green, A. (2015). Engagement as visual attention: A new story for publishers. Session 6 - Audience Engagement: The Next Generation. Retrieved from https://www.pdrf.net/wp-content/uploads/2015/10/35_Syn11Green-Bassett-Engagement.pdf 
  5. Bhattacharya, S., Sukthankar, R., and Shah, M. (2010). A framework for photo-quality assessment and enhancement based on visual aesthetics. Proc. ACM Multimedia, 271-280. 
  6. Broadbent, D. E. (1958). Perception and communication. Oxford: Pergamon Press. 
  7. Brodie, R. J., Ilic, A., Juric, B., and Hollebeek, L. (2011). Consumer engagement in a virtual brand community: An exploratory analysis. Journal of Business Research Volume, 66(1), 105-114.  https://doi.org/10.1016/j.jbusres.2011.07.029
  8. Busch, N. A., and VanRullen, R. (2010). Spontaneous EEG oscillations reveal periodic sampling of visual attention. Proceedings of the National Academy of Sciences of the United States of America, 107(37), 16048-16053.  https://doi.org/10.1073/pnas.1004801107
  9. Buschman, T. J., and Miller, E. K. (2009). Serial, covert shifts of attention during visual search are reflected by the frontal eye fields and correlated with population oscillations. Neuron, 63(3), 386-396.  https://doi.org/10.1016/j.neuron.2009.06.020
  10. Carren, J. (2015). Photography Composition: 12 Composition Rules for Your Photos to Shine. Scotts Valley, CA: CreateSpace Independent Publishing Platform. 
  11. Cass, N., and Walker, G. (2009). Emotions and rationality: The characterization and evaluation of opposition to renewable energy projects. Emotion, Space and Society, 2(1), 62-69.  https://doi.org/10.1016/j.emospa.2009.05.006
  12. Chandrashekar, A., Amat, F., Basilico, J., and Jebara, T. (2017). Artwork Personalization at Netflix. Retrieved from https://medium.com/netflix-techblog/artwork-personalization-c589f074ad76 
  13. Cerosaletti, C. D., and Loui, A. C. (2009). Measuring the perceived aesthetic quality of photographic images. in QoMEx'09. 
  14. Chen, K., and Choi, H. J. (2008). Visual attention and eye movements. Retrieved from https://www.ics.uci.edu/~majumder/vispercep/paper08/visualattention.pdf 
  15. Childers, T. L., and Houston, M. J. (1984). Conditions for a picture-superiority effect on consumer memory. Journal of Consumer Research, 11(2), 643-654.  https://doi.org/10.1086/209001
  16. Cowan, N. (2011). The focus of attention as observed in visual working memory tasks: Making sense of competing claims. Neuropsychologia, 49(6), 1401-1406.  https://doi.org/10.1016/j.neuropsychologia.2011.01.035
  17. Datta, R., Joshi, D., Li, J., and Wang, J. Z. (2006). Studying aesthetics in photographic images using a computational approach. In: Leonardis A., Bischof H., Pinz A. (eds) Computer Vision - ECCV 2006. Lecture Notes in Computer Science, vol 3953. Springer, Berlin, Heidelberg. 
  18. Dayan, Z. (2018). Visual content: the future of storytelling. Forbes, Apr 2, 2018. 
  19. Deutsch, J. A., and Deutsch, D. (1963). Attention: Some theoretical considerations. Psychological Review, 70(1), 80-90.  https://doi.org/10.1037/h0039515
  20. Domke, D., Perlmutter, D., and Spratt, M. (2012). The primes of our times? An examination of the 'power' of visual images. Journalism, 3(2), 131-159.  https://doi.org/10.1177/146488490200300211
  21. Duchowski, A. T. (2017). Neuroscience and psychology. In: Eye Tracking Methodology. Springer, Cham. 
  22. Edell, J. A., and Staelin, R. (1983). The information processing of pictures in print advertisements. Journal of Consumer Research, 10(1), 45-61.  https://doi.org/10.1086/208944
  23. Edwards, J. (2017). ASOS changed its website and people have mixed feelings. Cosmopolitan. 
  24. Fiebelkorn, I. C., Saalmann, Y. B., and Kastner, S. (2013). Rhythmic sampling within and between objects despite sustained attention at a cued location. Current Biology, 23, 2553-2558.  https://doi.org/10.1016/j.cub.2013.10.063
  25. Field, A. (2017). Discovering statistics using SPSS. London, Great Britain, SAGE Publications Ltd. 
  26. Frey, K., and Eagly, A. (1993). Vividness can undermine the persuasiveness of messages. Journal of Personality and Social Psychology, 65(1), 32-44.  https://doi.org/10.1037/0022-3514.65.1.32
  27. Gibson, J. J. (1941). A critical review of the concept of set in contemporary experimental psychology. Psychological Bulletin, 38(9), 781-817.  https://doi.org/10.1037/h0055307
  28. Gilani, S. O., Ramanathan, S., Hua, H., Winkler, S., and Yen, S. (2013). Impact of image appeal on visual attention during photo triaging. 2013 IEEE International Conference on Image Processing, 231-235. 
  29. Haxby, J. V., Hoffman, E. A., and Gobbini, M. I. (2000). The distributed human neural system for face perception. Trends in Dognitive Sciences, 4(6), 223-233.  https://doi.org/10.1016/S1364-6613(00)01482-0
  30. Heyman, S. (2015). Photos, photos everywhere. Retrieved from https://www.nytimes.com/2015/07/23/arts/international/photos-photos-everywhere.html 
  31. Howe, N., and Strauss, W. (2007). The next twenty years: how customer and workforce attitudes will evolve. Harvard Business Review, 41-52. 
  32. James, W. (1981). The principles of psychology (Vol. I). Cambridge, MA: Harvard University Press. 
  33. Kim, M., and Lennon, S. (2008). The effects of visual and verbal information on attitudes and purchase intentions in internet shopping. Psychology and Marketing, 25(2), 146-178.  https://doi.org/10.1002/mar.20204
  34. Kim, D. (2010). The interactive effects of colors on visual attention and working memory: In case of images of tourist attractions. Ichrie Conference. 
  35. Kirmani, A., and Rao, A. R. (2000). No pain, no gain: a critical review of the literature on signaling unobservable product quality. Journal of Marketing, 64(2), 66-79.  https://doi.org/10.1509/jmkg.64.2.66.18000
  36. Kolbow-Lehradt, B. (2016). Piv imaging, photo and imaging market. Retrieved from www.piv-imaging.com 
  37. Kong, S., Shen, X., Lin, Z., Mech, Z., and Fowlkes, C. (2016). Photo aesthetics ranking network with attributes and content adaptation. Lecture Notes in Computer Science, ECCV, 662-679. 
  38. Krishnan, G. (2016). Selecting the best artwork for videos through A/B testing. Retrieved from https://medium.com/netflix-techblog/selecting-the-best-artwork-for-videos-through-a-b-testing-f6155c4595f6 
  39. Landau, A. N., and Fries, P. (2012). Attention samples stimuli rhythmically. Current Biology, 22, 1000-1004.  https://doi.org/10.1016/j.cub.2012.03.054
  40. Lauer, D. A. (1979). Design Basics, Holt, Rinehart and Winston. New York, NY. 
  41. Lee, D., Hosanagar, K., and Nair, H. S. (2017). Advertising content and consumer engagement on social media: Evidence from Facebook. Management Science, 64(11), 4967-5460. 
  42. Li, C., and Chen, T. (2009). Aesthetic visual quality assessment of paintings. IEEE Journal of Selected Topics in Signal Processing, 3(2), 236-252.  https://doi.org/10.1109/JSTSP.2009.2015077
  43. Lutz, K. A., and Lutz, R. J. (1997). Effects of interactive imagery on learning: Application to advertising. Journal of Applied Psychology, 62(4), 493. 
  44. Luo, W., Wang, X., and Tang, X. (2011). Content-based photo quality assessment. In ICCV. 
  45. Magdalena, B., and Plechawska-Wójcik, M. (2017). Eye-tracking metrics in perception and visual attention research. European Journal of Medical Technologies, 16(3), 11-23. 
  46. Malu, G., Bapi, R. S., and Indurkhya, B. (2017). Learning photography aesthetics with deep CNNs. The 28th Modern Artificial Intelligence and Cognitive Science Conference. 
  47. Matlin, M. W. (1994). Cognition (3rd ed.). Orlando, FL: Harcourt Brace. 
  48. Miniard, P. W., Bhatla, S., Lord, K. R., Dickson, P. R., and Unnava, H. R. (1991). Picture-based persuasion processes and the moderating role of involvement. Journal of Consumer Research, 18(1), 92-107.  https://doi.org/10.1086/209244
  49. Mitchell, A. A. (1986). The effect of verbal and visual components of advertisements on brand attitudes and attitude toward the advertisement. Journal of Consumer Research, 13(1), 12-24.  https://doi.org/10.1086/209044
  50. Morton, J., and Johnson, M. H. (1991). Conspec and conlern: A two-process theory of infant face recognition. Psychological Review, 98, 164-181.  https://doi.org/10.1037/0033-295X.98.2.164
  51. Murdoch, P., and Flurscheim, C. H. (1983). Form. in Flurscheim, C.H. (Ed.), Industrial Design in Engineering, The Design Council, Worcester, 105-131. 
  52. Murray, N., Marchesotti, L., and Perronnin, F. (2012). AVA: A large-scale database for aesthetic visual analysis. Computer Vision and Pattern Recognition (CVPR) 2012 IEEE Conference on, 2408-2415. 
  53. Nelson, N. (2016). The power of a picture. Retrieved from https://media.netflix.com/en/company-blog/the-power-of-a-picture 
  54. Noton, D., and Stark, L. (1971). Scanpaths in saccadic eye movements while viewing and recognizing patterns. Vision Research, 11, 929-942.  https://doi.org/10.1016/0042-6989(71)90213-6
  55. Novak, T. P., and Hoffman, D. L. (1996). Toward the development of web measurement standards. World Wide Web Journal, Winter, 2(1), 213-246. 
  56. O'Brien, H. L., and Toms, E. G. (2010). The development and evaluation of a survey to measure user engagement. Journal of the American Society for Information Science and Technology, 61(1), 50-69.  https://doi.org/10.1002/asi.21229
  57. Orendorff, A. (2018). The state of the ecommerce fashion industry: statistics, trends & strategy. Shopify Enterprise. 
  58. Park, K., Hong, S., Baek, M., and Han, B. (2017). Personalized Image Aesthetic Quality Assessment by Joint Regression and Ranking. IEEE Winter Conference on Applications of Computer Vision (WACV). 
  59. Phillips, B. J. (2000). The impact of verbal anchoring on consumer response to image ads. Journal of Advertising, 29(1), 15-24.  https://doi.org/10.1080/00913367.2000.10673600
  60. Pieters, R., Wedel, M., and Zhang, J. (2007). Optimal feature advertising design under competitive clutter. Management Science, 53(11), 1815-1828.  https://doi.org/10.1287/mnsc.1070.0732
  61. Pieters, R., Wedel, M., and Batra, R. (2010). The stopping power of advertising: measures and effects of visual complexity. Journal of Marketing, 74(5), 48-60.  https://doi.org/10.1509/jmkg.74.5.048
  62. Posner, M. I., Snyder, C. R. R., and Davidson, B. J. (1980). Attention and the detection of signals. Experimental Psychology: General, 109(2), 160-174.  https://doi.org/10.1037/0096-3445.109.2.160
  63. Redi, J. A., et al. (2013). Crowdsourcing-based multimedia subjective evaluations: A case study on image recognizability and aesthetic appeal. in Proc. 2nd ACM Int. Workshop Crowdsourcing Multimedia, 29-34. 
  64. Riley, M., et al. (2018). AVA: The Art and Science of Image Discovery at Netflix. Retrieved from https://medium.com/netflix-techblog/ava-the-art-and-science-of-image-discovery-at-netflix-a442f163af6 
  65. Robey, R., and Barcikowski R. (1987). Sphericity tests and repeated measures data. Annual Meeting of the American Educational Research Association Reports, 143, 35. 
  66. Schmitt, B. H., and Simonson, A. (1997). Marketing aesthetics: The strategic management of brands, identity, and image. The Free Press, New York, NY. 
  67. Schultz, T., Fielding, K., and Newton, F. (2018). Images that engage people with sustainable urban water management. Science Communication, 40(2), 199-227.  https://doi.org/10.1177/1075547018760902
  68. Siahaan, E., Redi, J. A., and Hanjalic, A. (2014). Beauty is in the scale of the beholder: Comparison of methodologies for the subjective assessment of image aesthetic appeal. International Workshop on Quality of Multimedia Experience. 
  69. Siahaan, E., Redi, J. A., and Hanjalic, A. (2016). A reliable methodology to collect ground truth data of image aesthetic appeal. IEEE Transactions on Multimedia, 18(7), 1338-1350.  https://doi.org/10.1109/TMM.2016.2559942
  70. Sleenhoff, S., Cuppen, E., and Osseweijer, P. (2015). Unravelling emotional viewpoints on a bio-based economy using Q methodology. Public Understanding of Science, 24, 858-877.  https://doi.org/10.1177/0963662513517071
  71. Smith, R. A. (1991). The effects of visual and verbal advertising information on consumers' inferences. Journal of Advertising, 20(4), 13-24.  https://doi.org/10.1080/00913367.1991.10673351
  72. Smith, S. M., and Shaffer, D. R. (2000). Vividness can undermine or enhance message processing: The moderating role of vividness congruency. Personality and Social Psychology Bulletin, 26, 769-779.  https://doi.org/10.1177/0146167200269003
  73. Teixeira, T., Wedel, M., and Pieters, R. (2012). Emotion-induced engagement in internet video advertisements. Journal of Marketing Research, 49(2), 144-159.  https://doi.org/10.1509/jmr.10.0207
  74. Treisman, A. (1986). Features and objects in visual processing. Scientific American, 255(5), 114B-125. 
  75. Treisman, A., and Gelade, G. (1980). A feature integration theory of attention. Cognitive Psychology, 12, 97-136.  https://doi.org/10.1016/0010-0285(80)90005-5
  76. Tuch, A. N., Bargas-Avila, J. A., Opwis, K., and Wilhelm, F. H. (2009). Visual complexity of websites: Effects on users' experience, physiology, performance, and memory. International Journal of Human-Computer Studies, 67(9), 703-715.  https://doi.org/10.1016/j.ijhcs.2009.04.002
  77. Ullman, S., Vidal-Naquet, M., and Sali, E. (2002). Visual features of intermediate complexity and their use in classification. Nature Neuroscience, 5, 682-687.  https://doi.org/10.1038/nn870
  78. Unnava, H. R., and Burnkrant, R. E. (1991). An imagery-processing view of the role of pictures in print advertisements. Journal of Marketing Research, 226-231. 
  79. Von Helmholtz, H. (1925). Handbuch der Physiologischen Optik (Treatise on Physiological Optics) (Vol. III, Translated from the Third (German ed.). Rochester, NY: The Optical Society of America. 
  80. Wu, K., Vassileva, J., Zhao, Y., Noorian, Z., Waldner, W., and Adaji, I. (2016). Complexity or simplicity? Designing product pictures for advertising in online marketplaces. Journal of Retailing and Consumer Services, 28, 17-27.  https://doi.org/10.1016/j.jretconser.2015.08.009
  81. Yarbus, A. L. (1967). Eye movements and vision. New York: Plenum Press. 
  82. Zakrewsky, S., Zakrewsky, A., Shokoufandeh, K., and Shokoufandeh, A. (2016). Item popularity prediction in e-commerce using image quality feature vectors. Published in ArXiv. 
  83. Zhang, T., Nefs, H., and Heynderickx, I. (2014). The aesthetic appeal of depth of field in photographs. in Proc. 6th Int. Workshop Quality Multimedia Experience, 81-86.