Acknowledgement
이 논문은 2018학년도 충북대학교 학술연구지원사업의 연구비 지원에 의하여 연구되었음.
References
- 강영식, 이현우, 김병수, "프로세스 마이닝과 딥러닝을 활용한 구매 프로세스의 적기 입고예측에 관한 연구", Information Systems Review, 제20권, 제4호, 2018, pp. 25-41. https://doi.org/10.14329/isr.2018.20.4.025
- 김기태, 김종우, "클라우드 서비스 생태계 내의 협업 사례 연구: 클라우드 서비스 중개업을 중심으로", Information Systems Review, 제17권, 제1호, 2015, pp. 1-18. https://doi.org/10.14329/isr.2014.17.1.001
- 김정민, "인공지능 윤리 이슈와 교육 과정 동향", 월간SW중심사회, 소프트웨어정책연구소, 2019.
- 남충현, "오픈소스 AI: 인공지능 생태계와 오픈이노베이션", 정보통신정책연구원(KISDI), 2016.
- 신건호, 박규홍, 박용진, 안재현, "C2C 공유경제 서비스 참여자 간의 비대칭적 플랫폼 참여의도", Information Systems Review, 제19권, 제3호, 2017, pp. 47-67. https://doi.org/10.14329/isr.2017.19.3.047
- 이은광, "인공지능, 아직 통제․예측 어려워...국내외 산학연 정책 마련에 힘써", 2019, Available at http://www.dailybizon.com/news/articleView.html?idxno=12776.
- 전종홍, 이승윤, "개방적/인간친화적 인공지능 체계 기술 표준화 동향", TTA저널, 제169권, 2017, pp. 46-54.
- Acquisdata, "Artificial Intelligence Software", Global Industry Snapshot, GIS000175, ISSN 2208-4568, 2019.
- Adner, R., "Ecosystem as structure: an actionable construct for strategy", Journal of Management, Vol.43, No.1, 2017, pp. 39-58. https://doi.org/10.1177/0149206316678451
- Alberti, F. G. and E. Pizzurno, "Knowledge exchanges in innovation networks: Evidences from an Italian aerospace cluster", Competitiveness Review, Vol.25, No.3, 2015, pp. 258-287. https://doi.org/10.1108/CR-01-2015-0004
- Autio, E., M. Kenney, P. Mustar, D. Siegel, and M. Wright, "Entrepreneurial innovation: The importance of context", Research Policy, Vol.43, No.7, 2014, pp. 1097-1108. https://doi.org/10.1016/j.respol.2014.01.015
- Badger, E., "WiFi, hot tubs and big data: How Airbnb determines the price of a home", 2015, Available at https://www.washingtonpost.com/news/wonk/wp/2015/08/27/wifi-hot-tubs-and-bigdata-how-airbnb-determines-the-price-of-a-home/?noredi rect=on.
- Bostrom, N., "Strategic implications of openness in AI development", Global Policy, Vol.8, No.2, 2017, pp. 135-148. https://doi.org/10.1111/1758-5899.12403
- Brynjolfsson, E. and A. Mcafee, "The business of artificial intelligence", Harvard Business Review, 2017.
- Brynjolfsson, E., D. Rock, and C. Syverson, "Artificial intelligence and the modern productivity paradox: A clash of expectations and statistics", In The economics of artificial intelligence: An agenda, National Bureau of Economic Research, 2018, pp. 23-57.
- Bulgaru, I., "10 Ways alexa is revolutionizing healthcare", healthcareweekly, 2019, Available at https://healthcareweekly.com/alexa-in-healthcare/.
- Cath, C., S. Wachter, B. Mittelstadt, M. Taddeo, and L. Floridi, "Artificial intelligence and the 'good society': The US, EU, and UK approach", Science and Engineering Ethics, Vol.24, No.2, 2018, pp. 505-528. https://doi.org/10.1007/s11948-017-9901-7
- Desai, A. M., Intel Create 2019 Event Reveals 'Master Plan' Involving Open-Source Software With High Performance Kernels For Ray Tracing, 2019, Available at https://appuals.com/intel-create-2019-event-reveals-master-plan-involving-open-source-software-with-high-performance-kernels-for-ray-tracing/.
- Edge, D., J. Larson, and C. White, "Bringing AI to BI: enabling visual analytics of unstructured data in a modern Business Intelligence platform", In Extended Abstracts of the 2018 CHI Conference on Human Factors in Computing Systems, 2018.
- Evans, D. S. and R. Schmalensee, "Matchmakers: The new economics of multisided platforms", Harvard Business Review Press, 2016
- Forrester, Industrial AI Development White Paper, Forrester Consulting, 2018.
- Glorot, X., A. Bordes, and Y. Bengio, "Domain adaptation for large-scale sentiment classification: A deep learning approach," Proceedings of the 28th international conference on machine learning (ICML-11), 2011, pp. 513-520.
- Graca, P. and L. M. Camarinha-Matos, "Performance indicators for collaborative business ecosystems-Literature review and trends," Technological Forecasting and Social Change, Vol.116, 2017, pp. 237-255. https://doi.org/10.1016/j.techfore.2016.10.012
- Hemant, T. and M. Kevin, "The end of scale", MIT Sloan Management Review, Vol.59, No.3, 2018.
- Helbing, D., "Societal, economic, ethical and legal challenges of the digital revolution: From big data to deep learning, artificial intelligence, and manipulative technologies", Towards Digital Enlightenment, Springer, Cham, 2019, pp. 47-72.
- Isckia, T., M. De Reuver, and D. Lescop, "Digital innovation in platform-based ecosystems: an evolutionary framework", Proceedings of the 10th International Conference on Management of Digital EcoSystems, ACM, 2018, pp. 149-156).
- Jaeger, H., "Artificial intelligence: Deep neural reasoning", Nature, Vol. 538, 2016, pp. 467-478. https://doi.org/10.1038/nature19477
- Jhonsa, E., Nvidia and Intel's Mobileye Both Continue Racking Up Autonomous Driving Deals, 2019, Available at https://www.thestreet.com/technology/nvidia-and-intel-s-mobileye-both-continue-racking-up-autonomous-driving-deals-14995698.
- Karcz, A., Google Home vs. Amazon Echo: Which Smart Speaker Is Better?, Forbes, 2019, Available at https://www.forbes.com/sites/anthonykarcz/2019/08/26/google-home-vs-amazon-echo-which-smart-speaker-is-better/#7078839c5591.
- Kim, J., "The platform business model and business ecosystem: Quality management and revenue structures", European Planning Studies, Vol.24, No.12, 2016, pp. 2113-2132. https://doi.org/10.1080/09654313.2016.1251882
- Kolbjornsrud, V., R. Amico, and R. J. Thomas, "How artificial intelligence will redefine management", Harvard Business Review, 2016.
- Korosec, K., SoftBank's Next Bet: $940M Into Autonomous Delivery Startup Nuro, 2019, Available at https://techcrunch.com/2019/02/11/softbanks-next-bet-940m-into -autonomous-delivery-startup-nuro/.
- LeCun, Y., Y. Bengio, and G. Hinton, "Deep learning," Nature, Vol.521, 2015, pp. 436-444. https://doi.org/10.1038/nature14539
- Lee, J. U., K. J. Seo, and H. W. Kim, "An exploratory study on the cloud computing services: issues and suggestion for the success", Asia Pacific Journal of Information Systems, Vol.24, No.4, pp. 473-491.
- Li, W., W. J. Wu, H. M. Wang, X. Q. Cheng, H. J. Chen, Z. H. Zhou, and R. Ding, "Crowd intelligence in AI 2.0 era", Frontiers of Information Technology & Electronic Engineering, Vol.18, No.1, 2017, pp. 15-43. https://doi.org/10.1631/FITEE.1601859
- Lindgren, P., P. Valter, and R. Prasad, "Advanced business model innovation supported by artificial intelligence, deep learning, multi business model patterns and a multi business model library," Wireless Personal Communications, 2019, pp. 1-15.
- Liu, D. Y., S. W. Chen, and T. C. Chou, "Resource fit in digital transformation: Lessons learned from the CBC Bank global e-banking project", Management Decision, Vol.49, No.10, 2011, pp. 1728-1742. https://doi.org/10.1108/00251741111183852
- Makridakis, S., "The forthcoming artificial intelligence (AI) revolution: Its impact on society and firms", Futures, Vol.90, 2017, pp. 46-60. https://doi.org/10.1016/j.futures.2017.03.006
- Metelskaia, I., O. Ignatyeva, S. Denef, and T. Samsononwa, "A business model template for AI solutions," Proceedings of the International Conference on Intelligent Science and Technology (ICIST), 2018, pp. 35-41.
- Nambisan, S., M. Wright, and M. Feldman, "The digital transformation of innovation and entrepreneurship: Progress, challenges and key themes", Research Policy, Vol.48, No.8, 2019.
- Ojasalo, J. and H. Kauppinen, "Collaborative innovation with external actors: an empirical study on open innovation platforms in smart cities", Technology Innovation Management Review, Vol.6, No.12, 2016.
- Osborne, C., IBM Brings Artificial Intelligence to the Heart of Cybersecurity Strategies, ZDNet, 2018, Available at https://www.zdnet.com/article/why-artificial-intelligence-is-at-the-core-of-ibm-cybersecurity-strategies/.
- Pappas, I. O., P. Mikalef, M. N. Giannakos, J. Krogstie, and G. Lekakos, "Big data and business analytics ecosystems: Paving the way towards digital transformation and sustainable societies", Information Systems and e-Business Management, Vol.16, 2018, pp. 479-491. https://doi.org/10.1007/s10257-018-0377-z
- Parmar, A., Butterfly Network Wants to do to Ultrasound what Digital Cameras did to Kodak film, 2019, Available at https://medcitynews.com/2019/01/butterfly-network-wants-to-do-to-ultrasound-what-digital-cameras-did-to-kodak-film/.
- Quan, X. I. and J. Sanderson, "Understanding the artificial intelligence business ecosystem", IEEE Engineering Management Review, Vol.46, No.4, 2018, pp. 22-25. https://doi.org/10.1109/EMR.2018.2882430
- Ransbotham, S., D. Kiron, P. Gerbert, and M. Reeves, "Reshaping business with artificial intelligence: Closing the gap between ambition and action", MIT Sloan Management Review, Vol.59, No.1, 2017
- Roberts, A., "Global IBM watson services market status by current trend and future plan 2019-2028", Westminster News Online, 2019, Available at https://westminsternewsonline.com/31893/global-ibm-watson-services-market-status-by-current-trend-and-future-plan-2019-2028.
- Rong, K., Y. Lin, B. Li, T. Burstrom, L. Butel, and J. Yu, "Business ecosystem research agenda: more dynamic, more embedded, and more inter-nationalized", Asian Business & Management, Vol.17, No.3, 2018, pp. 167-182. https://doi.org/10.1057/s41291-018-0038-6
- Russell, M. G. and N. V. Smorodinskaya, "Leveraging complexity for ecosystemic innovation", Technological Forecasting and Social Change, Vol.136, 2018, pp. 114-131. https://doi.org/10.1016/j.techfore.2017.11.024
- Schmidhuber, J., "Deep learning in neural networks: An overview", Neural Networks, Vol.61, 2015, pp. 85-117. https://doi.org/10.1016/j.neunet.2014.09.003
- Simon, J. P., "Artificial intelligence: Scope, players, markets and geography", Digital Policy, Regulation and Governance, Vol.22, No.3, 2019, pp. 208-237. https://doi.org/10.1108/DPRG-08-2018-0039
- Takaoka, K., K. Yamazaki, E. Sakurai, K. Yamashita, and Y. Motomura, "Development of an integrated AI platform and an ecosystem for daily life, business and social problems", In International Conference on Applied Human Factors and Ergonomics, 2018, pp. 300-309.
- Taneja, H. and K. Maney, "The end of scale", MIT Sloan Management Review, p. 59, 2018
- Tokui, S., K. Oono, S. Hido, and J. Clayton, "Chainer: A next-generation open source framework for deep learning", Proceedings of workshop on machine learning systems (LearningSys) in the twenty-ninth annual conference on neural information processing systems (NIPS), Vol.5, 2015, pp. 1-6.
- Tsujimoto, M., Y. Kajikawa, J. Tomita, and Y. Matsumoto, "A review of the ecosystem concept-Towards coherent ecosystem design", Technological Forecasting and Social Change, Vol.136, 2018, pp. 49-58. https://doi.org/10.1016/j.techfore.2017.06.032
- Westerman, G., C. Calmejane, D. Bonnet, P. Ferraris, and A. McAfee, "Digital transformation: A roadmap for billion-dollar organizations", MIT Center for Digital Business and Capgemini Consulting, Vol.1, 2011, pp. 1-68.
- Wiggers, K., Facebook founds AI Language Resea rch Consortium to Solve Challenges in Natural Language Processing, 2019, Available at https://venturebeat.com/2019/08/28/facebook-founds-ailanguage-research-consortium-tosolve-challenges-in-natural-language-processing/.
- Winnig, L., "GE's big bet on data and analytics", MIT Sloan Management Review, Vol.57, No.3, 2016.
- Zellinger, W., B. A. Moser, T. Grubinger, E. Lughofer, T. Natschlager, and S. Saminger-Platz, "Robust unsupervised domain adaptation for neural networks via moment alignment", Information Sciences, 2019.