
1. Introduction

Lattice implication algebra was introduced in [1] 

as a bounded lattice equipped with a logical 

implication “→” and an involution “′”. This algebra is 

one of many-valued logical systems with a 

conjunction and a disjunction and a logical implication, 

which has many interesting properties as algebraic 

structure and has been studied in many literatures on 

the algebraic viewpoint[2-6]. The many-valued 

lattice logic is closely related to computer science 

dealing with decision making, inference system and 

artificial intelligence, etc. Lattice implication algebra 

is a generalization of fuzzy sets with ukasiewicz 

fuzzy implication[7]. So it can be used to simplify the 

logical operations of fuzzy sets, and for the 
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antitone-involution on lattice implication algebra has 

the similar characteristics with polar maps of formal 

concept which is applied to Machine Learning[8], this 

algebra can be studied to analysis the formal concept 

or the fuzzy formal concept. Also, as a lattice 

implication algebra is a partially ordered set, this 

algebra has a good mathematical structure to display 

hierarchical model such as role-based access control 

and attribute-based access control in cloud 

environment or big data environment[9, 10].

The notion of lattice implication algebras is 

equivalence with that of quasi lattice implication 

algebras[11] which is an algebra of  type (2,1,0) with 

a binary operation, implication, and a unary 

operation, involution and the greatest element.

After a partial multiplier on a commutative 

semigroup had been introduced in [12], the notion 

of multipliers was studied and applied to many other 

algebraic structures[13-15]. The definitions and 

properties of derivations, which are similar 

operators to multipliers, of lattice implication 

algebras have been researched in [16-19], and the 

derivation defined in [17] becomes a multiplier.

In this paper we define the notion of multipliers 

and simple multipliers of lattice implication 

algebras, and prove every multiplier is simple 

multiplier. Also we research the relationship 

between multipliers and homomorphisms, and prove  

that for each element  in a lattice implication algebra 

 , the interval   is isomorphic to ′  as 

lattices, and that for each ∈ satisfying ∨′  , 

 is isomorphic to × ′ as lattice implication 

algebras.

2. Lattice Implication ALgebras

A lattice implication algebra is an algebraic 

system ⋅ ′ with a binary operation “⋅”, an 

involution “′ ” and an element  satisfying the 

following axioms: for all   ∈ ,

(L1)   ,

(L2]   ,

(L3)   ,

(L4)    and    imply   ,

(L5)   ′′ .

Lemma 2.1. ([4,11]) Let  be a lattice implication 

algebra. Then  satisfies the following: for any , , 

 ∈ ,

(1)   ,

(2)  ≤  if and only if   ,

(3) ′   and ′  ,

(4) ′  ,

(5)  ≤ ,

(6)  ≤  implies  ≤  and  ≤  ,

(7)  ≤  implies ′ ≤ ′ ,

(8)   ,

(9)     ∨ and ∧  ′∨′ ′ ,

(10) ∨′  ′∧′ ,

(11) ∧′  ′∨′ ,

(12) ∨  ∧ ,

(13) ∧  ∨ ,

(14) ∧  ∧ .

Table 1. Cayley table of binary operation ⋅ on 

⋅      
      
      
      
      
      
      

Example 2.2. Let         be a set. If we 

define a binary operation ⋅ on  by the Cayley table 

of Table 1 and define ′   for every ∈ , then 

⋅ ′  is a lattice implication algebra with the 

Hasse diagram of Fig. 1.



 

 



Fig. 1. Hasse diagram of ⋅

Lemma 2.3. Let  be a lattice implication algebra. 
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Then for every    ∈ , 

∧ ≤  ⇒  ≤  .

Proof. Let ∧ ≤  . Then we have

           ∧ ∨

          

         ∨ .

That is ∨ ≤  . Also, since  ≤ ∨ , 

 ≤ ∨ . This implies   ∨ . Hence 

we have

  ∨  ∨    ,

and  ≤  .                                       □

Lemma 2.4. Let  be a lattice implication algebra. 

Then for every    ∈ ,

∨  ∨ .

Proof. Let    ∈ . Then we have

   ∨  ∨′′  ′∧′ ′

          ′′ ∨′′   ∨

by Lemma 2.1.                                    □

Example 2.5. Let    be the closed interval in 

real numbers  and the partial order ≤ is the usual 

order in . If we define a binary operation ⋅ and a 

unary operation ′ on  by

  ∧ and ′  ,

respectively, for every  ∈ . Then  is a lattice 

implication algebra.

3. Multipliers of Lattice Implication Algebras

A map    → on lattice implication algebras 

and  is called a lattice-homomorphism of  to 

if

∨  ∨ and ∧  ∧ ,

and a homomorphism of  to  if 

  

for every ∈ .

Lemma 3.1. Let  and  be lattice implication 

algebras. If    → is a homomorphism, then  is 

a lattice-homomorphism.

Proof. Let  be a homomorphism of  to  and , 

,  ∈ . Then

∨    

                ∨ .

This implies that 

  ∧  ′∨′ ′  ′∨′ 

            ′∨′   ′ ∨′ 

 ′ ∧′ 

            ′∧′ ″ ∧″ 

            ∧ .

Hence  is a lattice-homomorphism.           □

The converse of Lemma 3.1 is not true in general 

as the following example show.

Example 3.2. In Example 2.2, if we define a map 

   → by     ,     , 

      then  is a 

lattice-homomorphism of  , but it is not 

homomorphism, because 

    ≠     .

Let  and  denote the families of 

all homomorphisms and all lattice-homomorphisms of a 

lattice implication algebra  respectively. Then we 

know that ⊊ from Lemma 3.1 and 

Example 3.2.

Definition 3.3. Let  be a lattice implication algebra. 

A map    → is called a multiplier of  if

  

for every  ∈ .

Lemma 3.4. Let  be a multiplier of a lattice 

implication algebra  . Then the following properties 

are satisfied: for every   ∈ , 

(1)    ,

(2)  ≤  , in particular   ,

(3)  ≤  ,
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(4)  ≤  implies  ≤  ,

(5)   ′′  ,

(6)   ′ .

Proof. (1) Let  ∈ . Then we have

       .

(2) For any ∈ , we have

 ≤ ′  ′  ′  ″    .

(3) For any ∈ , by (2) of this lemma, we have

      .

(4) Let  ≤  in . Then   . Since  ≤

 , we have

    

                .

(5) For any ∈ , we have

    ′′   ′′  .

(6) For any ∈ , by (5) of this lemma, we have

    ′′   ′ .       □

Lemma 3.5. Every multiplier of a lattice implication 

algebra is a lattice-homomorphism.

Proof. Let  be a multiplier of  and ∈ . Then 

by Lemma 3.4(6), we have

∨  ∨′  ′∧′ 

                ′∨′  ∨ ,

and

∧  ∧′  ′∨′ 

 ′∧′  ∧ .  □

Every multiplier is a lattice-homomorphism, but 

the converse of Lemma 3.5 is not true in general. In 

fact the map  in Example 3.2 is a 

lattice-homomorphism of  , but not multiplier 

because of      ≠     .

Example 3.6. Let  be a lattice implication algebra 

and ∈ . If we define a map    → by

   

for every ∈ , then  is a multiplier.

The multiplier  defined in Example 3.6 is called 

a simple multiplier. 

Let  and  denote the families of all 

multipliers and all simple multipliers, respectively, of 

a lattice implication algebra  . Then it is clear that

 ⊆  . And from Lemma 3.5 and Example 

3.2 we know that ⊊ .

Theorem 3.7. Every multiplier  of a lattice 

implication algebra  is simple with   ′.

Proof. Let    → be a multiplier of  . Then we 

have

  ″   ′  ′

      ′″  ′  ′

for every ∈ . Hence   ′.                □

From Theorem 3.7, we know that 

   for any lattice implication algebra  .

Lemma 3.8. Let  be a lattice implication algebra. 

Then for any ∈ , the interval

  ∈  ≤  ≤ 

is a lattice implication algebra with an involution 

⊥ defined by 
⊥   for every ∈ .

Proof. Let ⊥ be a unary operation defined by 


⊥   for every ∈. Then for any  ∈

, we have


⊥⊥    ∨  

and


⊥

⊥      ∨  .

This implies ⊥ is an involution of  satisfying 

the axiom (L5) in definition of lattice implication 

algebra. Other axioms (L1)-(L4)  are satisfied 

trivially in  since  ⊆  .                   

     □

Lemma 3.9. Let  be an element of a lattice 
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implication algebra  . Then the restriction 
 to 

of  multiplier  is a lattice-isomorphism from 

to ′.

Proof. Suppose that 
  → is the restriction to 

 of a multiplier  . Then for any ∈ ,  

  ′′∈′ and  is a lattice-homomorphism 

by Lemma 3.5, hence 
 is also a lattice-homo- 

morphism.

Let 
   

  for any ∈. Then  

 and ′′  ′′ . Since  ≤  and  ≤ , 

′ ≤ ′ and ′ ≤ ′ , and we have 

′  ′∨′  ′′ ′  ′′ ′  ′∨′  ′ .

This implies   ″  ″  , and 
 is injective.

Let ∈′. Since ′ ≤ ′ and ′ ′ ≤ ″ 

 , ′ ′∈ and


 ′ ′   ′ ′  ′ ′  ∨′  .

This implies 
  →′ is surjective. Hence 

is a lattice-isomorphism from  to ′.   □

In Example 2.2, the multiplier  is not a homomor- 

phism because of     ≠ 

   .

Also there is an example of homomorphism but not 

multipliers as the following example show. So we 

can know that multiplier and homomorphism are 

different notions to each other.

Example 3.10. In Example 2.2, if we define a map  

 → by

             

then  is a homomorphism of  but not a multiplier 

because of     ≠     .

Lemma 3.11. Let  be a lattice implication algebra 

and   ∈ . Then the multipliers of  satisfy the 

following properties:

(1)    ∈     ,

(2)     ,

(3)   ′′  ,

(4)  ≤  and ′ ≤   ,

(5)    .

If ∈ such that ∨′  , then the following are 

satisfied:

(6) for every ∈ and ∈′,      

      and   , in particular    and    

      ′  ,

(7)    .

Proof. (1)-(5) are clear from the definition of simple 

multipliers.

(6) Let ∈ and ∈′ with ∨′  . 

Since   ∨′ ≤ ∨, ∨  . Hence we have

      ∨    .

Similarly, we can show   .

(7) Let ∈ . Since ∈′ by (4) of this 

lemma,     by (6) of this lemma.  □

Let  be a lattice implication algebra and ∈

such that ∨′  . Then the multiplier  is a 

closure operator of  by (2) and (4) of Lemma 3.4 

and (7) of Lemma 3.11.

Theorem 3.12. Let  be an element of lattice 

implication algebra  such that ∨′  . Then  is 

a homomorphism of  to the lattice implication 

algebra ′.

Proof. Let ∈ with ∨′  , and  ∈ . Then 

 ≤  , and this implies

  ≤   

by Lemma 2.1(6). Conversely, we have

      ∨  ≥ ∨′

by Lemma 2.1(9) and Lemma 3.11(4). This implies

     

≥ ∨′  ∨ ′

  ∨′ ≥ ∨′  

by Lemma 2.4 and Lemma 2.1(5). This implies 
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     and  ≤  .

Hence     , and  is a homo- 

morphism from  to ′.                       □

Let  and  be lattice implication algebras. Then 

 ×  is also a lattice implication algebra with a 

binary operation ⋅ and an involution ′ defined by 

      and  ′  ′ ′ 

for every       ∈ × .

Theorem 3.13. Let  be an element of a lattice 

implication algebra  such that ∨′  . If      

→ × ′ is a map given by

   ′  

for every ∈ , then  is an isomorphism of  to 

the lattice implication algebra × ′.

Proof. Let    → × ′ be the map given by 

   ′  for every ∈ . Since 

′   →  and    → ′ are homomorph- 

isms of lattice implication algebras by Theorem 3.12, 

 is a homomorphism. 

Let    for any  ∈ .  Then ′ 

′  ′  ′ and        . 

Hence we have

          ′∨  ′∧

 ′∧  ′∨    ,

and  is injective.

Let ∈× ′. Then  and ′ are 

lattice-homomorphisms by Lemma 3.5, and 

′   ,    and ′     by 

(6) and (1) of Lemma 3.11. This implies 

′∧  ′∧′  ∧  

and

∧  ∧   ∧  .

So for every ∈× ′, there is an 

element ∧∈ such that 

∧  ′∧  ∧    ,

i.e.,  is surjective. Hence  is an isomorphism of 

 to × ′.                                 □

4. Conclusions

The partial ordered sets have good structure for 

representing hierarchical objects and relationships 

of them. As lattice implication algebras, one of 

posets, is a generalization of Boolean algebras, it 

could be applied to more application problems than 

Boolean algebras. In this paper we define the 

multipliers of lattice implication algebras and 

research some properties of it, and using this 

properties, we showed that a lattice implication 

algebra have same structure with the Cartesian 

product of subalgebras. Finite totally ordered (chain) 

lattice is a lattice implication algebra. Theorem 3.13 

shows a method to make a lattice implication 

algebra by using chain lattice implication algebras 

with hierarchical structure. This study can be used 

in a variety of future cloud and big data 

environments, and extended to the specific research 

applied to role-based or attribute-based access 

control.
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