DOI QR코드

DOI QR Code

Modeling of the lateral stiffness of masonry infilled steel moment-resisting frames

  • Lemonis, Minas E. (School of Civil Engineering, National Technical University of Athens) ;
  • Asteris, Panagiotis G. (Computational Mechanics Laboratory, School of Pedagogical and Technological Education) ;
  • Zitouniatis, Dimitrios G. (Computational Mechanics Laboratory, School of Pedagogical and Technological Education) ;
  • Ntasis, Georgios D. (Computational Mechanics Laboratory, School of Pedagogical and Technological Education)
  • Received : 2018.11.14
  • Accepted : 2019.02.25
  • Published : 2019.05.25

Abstract

This paper presents an analytical model for the estimation of initial lateral stiffness of steel moment resisting frames with masonry infills. However, rather than focusing on the single bay-single storey substructure, the developed model attempts to estimate the global stiffness of multi-storey and multi-bay frames, using an assembly of equivalent springs and taking into account the shape of the lateral loading pattern. The contribution from each infilled frame panel is included as an individual spring, whose properties are determined on the basis of established diagonal strut macro-modeling approaches from the literature. The proposed model is evaluated parametrically against numerical results from frame analyses, with varying number of frame stories, infill openings, masonry thickness and modulus of elasticity. The performance of the model is evaluated and found quite satisfactory.

Keywords

References

  1. Al-Chaar, G. (2002), "Evaluating strength and stiffness of unreinforced masonry infill structures", ERDC/CERL-TR-02-1; US Army Corps of Engineers, Engineer Research and Development Center, U.S.A.
  2. Amato, G., Cavaleri, L., Fossetti, M. and Papia, M. (2008), "Infilled frames: Influence of vertical loads on the equivalent diagonal strut model", Proceedings of the 14th World Conference on Earthquake Engineering, Beijing, China, October.
  3. Asteris, P.G. (2003), "Lateral stiffness of brick masonry infilled plane frames", J. Struct. Eng., 129(8), 1071-1079. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:8(1071)
  4. Asteris, P.G. (2008), "Finite element micro-modeling of infilled frames", Electronic J. Struct. Eng., 8, 1-11.
  5. Asteris, P.G., Antoniou, S.T., Sophianopoulos, D.S. and Chrysostomou, C.Z. (2011), "Mathematical macromodeling of infilled frames: State of the art", J. Struct. Eng., 137(12), 1508-1517. https://doi.org/10.1016/j.engstruct.2013.08.010.
  6. Asteris, P.G., Chrysostomou, C.Z., Giannopoulos, I.P. and Smyrou, E. (2011), "Masonry infilled reinforced concrete frames with openings", ECCOMAS Thematic Conference - COMPDYN 2011: 3rd International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering: An IACM Special Interest Conference, Corfu, Greece, May.
  7. Asteris, P.G., Cavaleri, L., Trapani, F.D. and Sarhosis, V. (2016), "A macro-modelling approach for the analysis of infilled frame structures considering the effects of openings and vertical loads", Struct. Infrastruct. Eng., 12(5), 551-566. https://doi.org/10.1080/15732479.2015.1030761.
  8. Asteris, P.G., Giannopoulos, I.P. and Chrysostomou, C.Z. (2012), "Modeling of infilled frames with openings", Open Construct. Building Technol. J., 6(1), 81-91. https://doi.org/10.2174/1874836801206010081
  9. Asteris, P.G., Cotsovos, D.M., Chrysostomou, C.Z., Mohebkhah, A. and Al-Chaar, G.K. (2013), "Mathematical micromodeling of infilled frames: State of the art", Eng. Struct., 56, 1905-1921. https://doi.org/10.1016/j.engstruct.2013.08.010.
  10. Asteris, P.G., Cavaleri, L., Di Trapani, F. and Tsaris, A.K. (2017), "Numerical modelling of out-of-plane response of infilled frames: State of the art and future challenges for the equivalent strut macromodels", Eng. Struct., 132, 110-122. https://doi.org/10.1016/j.engstruct.2016.10.012.
  11. ATC (1999), Evaluation of Earthquake Damaged Concrete and Masonry Wall Buildings: Basic Procedures Manual, FEMA-306, Applied Technology Council, California, U.S.A.
  12. Cavaleri, L., Fossetti, M. and Papia, M. (2005), "Infilled frames: Developments in the evaluation of cyclic behaviour under lateral loads", Struct. Eng. Mech., 21(4), 469-494. https://doi.org/10.12989/sem.2005.21.4.469.
  13. CEN (2004), Eurocode 8: Design of Structures for Earthquake Resistance - Part 1: General Rules, Seismic Actions and Rules for Buildings, EN1998-1, Comite Europeen de Normalisation; France.
  14. CEN (2005a), Eurocode 3: Design of Structures - Part 1-1: General Rules and Rules for Buildings, EN1993-1-1, Comite Europeen de Normalisation; France.
  15. CEN (2005b), Eurocode 3: Design of Structures - Part 1-8: Design of Joints, EN1993-1-8, Comite Europeen de Normalisation; France.
  16. Chen, X. and Liu, Y. (2016), "A finite element study of the effect of vertical loading on the in-plane behavior of concrete masonry infills bounded by steel frames", Eng. Struct., 117, 118-129. https://doi.org/10.1016/j.engstruct.2016.03.010.
  17. Chrysostomou, C.Z., Gergely, P. and Abel, J.F. (2002), "A Six-Strut Model for Nonlinear Dynamic Analysis of Steel Infilled Frames", J. Struct. Stability Dynam., 02(03), 335-353. https://doi.org/10.1142/S0219455402000567.
  18. Chrysostomou, C.Z. and Asteris, P.G. (2012), "On the in-plane properties and capacities of infilled frames", Eng. Struct., 41, 385-402. https://doi.org/10.1016/j.engstruct.2012.03.057.
  19. Crisafulli, F.J. and Carr, A.J. (2007), "Proposed macro-model for the analysis of infilled frame structures", Bull. New Zealand Soc. Earthq. Eng., 40(2), 69-77. https://doi.org/10.5459/bnzsee.40.2.69-77
  20. CSI (2016), SAP-2000: Analysis Reference Manual, Computers and Structures Inc.; Berkeley, California, U.S.A.
  21. Dawe, J.L., Schriver, A.B. and Sofocleous, C. (1989), "Masonry infilled steel frames subjected to dynamic load", Canadian J. Civil Eng., 16(6), 877-885. https://doi.org/10.1139/l89-130.
  22. Dawe, J.L. and Seah, C.K. (1989), "Behaviour of masonry infilled steel frames", Canadian J. Civil Eng., 16(6), 865-876. https://doi.org/10.1139/l89-129.
  23. De Domenico, D., Falsone, G. and Laudani, R. (2018), "In-plane response of masonry infilled RC framed structures: A probabilistic macromodeling approach", Struct. Eng. Mech., 68(4), 423-442. https://doi.org/10.12989/sem.2018.68.4.423.
  24. El-Dakhakhni, W.W., Elgaaly, M. and Hamid, A. (2003), "Three-strut model for concrete masonry infilled steel frames", J. Struct. Eng., 129(2), 177-185. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:2(177)
  25. Eladly, M.M. (2017), "Numerical study on masonry infilled steel frames under vertical and cyclic horizontal loads", J. Construct. Steel Res., 138, 308-323. https://doi.org/10.1016/j.jcsr.2017.07.016.
  26. Fardis, M.N. and Panagiotakos, T.B. (1997), "Seismic design and response of bare and masonry infilled reinforced concrete buildings part II: Infilled structures", J. Earthq. Eng., 01(03), 475-503.
  27. Flanagan, R. and Bennett, R.M. (1999), "Bidirectional behavior of structural clay tile infilled frames", J. Struct. Eng., 125(3), 236-244. https://doi.org/10.1061/(ASCE)0733-9445(1999)125:3(236)
  28. Hamburger, R.O. (1993), "Methodology for seismic capacity evaluation of steel-frame buildings with infill unreinforced masonry", National Earthquake Conference, 2, 173-182, Central United States Earthquake Consortium, U.S.A.
  29. Hendry, A.W. (1981), Structural Brickwork, John Wiley and Sons, New Jersey, U.S.A.
  30. Holmes, M. (1961), "Steel frames with brickwork and concrete infilling", Proceedings Institution Civil Eng., 19(4), 473-478. https://doi.org/10.1680/iicep.1961.11305.
  31. Jazany, R.A., Hajirasouliha, I. and Farshchi, H. (2013), "Influence of masonry infill on the seismic performance of concentrically braced frames", J. Construct. Steel Res., 88, 150-163. https://doi.org/10.1016/j.jcsr.2013.05.009.
  32. Kakaletsis, D.J. and Karayannis, C.G. (2008), "Influence of Masonry Strength and Openings on Infilled R/C Frames Under Cycling Loading", J. Earthq. Eng., 12(2), 197-221. https://doi.org/10.1080/13632460701299138.
  33. Klingner, R.E. and Bertero, V.V. (1978), "Earthquake resistance of infilled frames", J. Struct. Division, 104(6), 973-989. https://doi.org/10.1061/JSDEAG.0004947
  34. Liauw, T. and Kwan, K. (1984), "Nonlinear behaviour of nonintegral infilled frames", Comput. Struct., 18(3), 551-560. https://doi.org/10.1016/0045-7949(84)90070-1.
  35. Liu, Y. and Manesh, P. (2013), "Concrete masonry infilled steel frames subjected to combined in plane lateral and axial loading - An experimental study", Eng. Struct., 52, 331-339. https://doi.org/10.1016/j.engstruct.2013.02.038.
  36. Liu, Y. and Soon, S. (2012), "Experimental study of concrete masonry infills bounded by steel frames", Canadian J. Civil Eng., 39(2), 180-190. https://doi.org/10.1139/l11-122.
  37. Longo, F., Wiebe, L., da Porto, F. and Modena, C. (2018), "Application of an in-plane/out-of-plane interaction model for URM infill walls to dynamic seismic analysis of RC frame buildings", Bull. Earthq. Eng., 16(12), 6163-6190. https://doi.org/10.1007/s10518-018-0439-0.
  38. Mainstone, R.J. (1971), "On the stiffness and strengths of infilled frames", ICE Proceedings, Supplement (Iv), PAPER 7360, 57-90, Garston, Watford, United Kingdom.
  39. Mainstone, R.J. (1974), "Supplementary note on the stiffness and strengths of infilled frames", Current Paper CP 13/74, Garston, Watford, United Kingdom.
  40. Markulak, D., Radic, I. and Sigmund, V. (2013), "Cyclic testing of single bay steel frames with various types of masonry infill", Eng. Struct., 51, 267-277. https://doi.org/10.1016/j.engstruct.2013.01.026.
  41. Moghadam, H.A., Mohammadi, M.G. and Ghaemian, M. (2006), "Experimental and analytical investigation into crack strength determination of infilled steel frames", J. Construct. Steel Res., 62(12), 1341-1352. https://doi.org/10.1016/j.jcsr.2006.01.002.
  42. Moghaddam, H.A. (2004), "Lateral load behavior of masonry infilled steel frames with repair and retrofit", J. Struct. Eng., 130(1), 56-63. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:1(56)
  43. Mohyeddin, A., Dorji, S., Gad, E.F. and Goldsworthy, H.M. (2017), "Inherent limitations and alternative to conventional equivalent strut models for masonry infill-frames", Eng. Struct., 141, 666-675. https://doi.org/10.1016/j.engstruct.2017.03.061.
  44. Mondal, G. and Jain, S.K. (2008), "Lateral stiffness of masonry infilled Reinforced Concrete (RC) frames with central opening", Earthq. Spectra, 24(3), 701-723. https://doi.org/10.1193/1.2942376.
  45. Nwofor, T.C. (2012), "Shear resistance of reinforced concrete infilled frames", J. Appl. Sci. Technol., 2(5), 148-163.
  46. Panto, B., Calio, I. and Lourenco, P.B. (2018), "A 3D discrete macro-element for modelling the out-of-plane behaviour of infilled frame structures", Eng. Struct., 175, 371-385. https://doi.org/10.1016/j.engstruct.2018.08.022.
  47. Panto, B., Silva, L., Vasconcelos, G. and Lourenco, P.B. (2019), "Macro-modelling approach for assessment of out-of-plane behavior of brick masonry infill walls", Eng. Struct., 181, 529-549. https://doi.org/10.1016/j.engstruct.2018.12.019.
  48. Papia, M., Cavaleri, L. and Fossetti, M. (2003), "Infilled frames: Developments in the evaluation of the stiffening effect of infills", Struct. Eng. Mech., 16(6), 675-693. http://doi.org/10.12989/sem.2003.16.6.675.
  49. Polyakov, S.V. (1960), "On the interaction between masonry filler walls and enclosing frame when loaded in the plane of the wall", Translations in Earthquake Engineering, Earthquake engineering Research Institute, Oakland, California, 36-42.
  50. Radic, I., Markulak, D. and Sigmund, V. (2016), "Analytical modelling of masonry-infilled steel frames", Technical Gazette, 23(1), 115-127. http://doi.org/10.17559/TV-20150528133754.
  51. Rodrigues, H., Varum, H. and Costa, A. (2010), "Simplified macro-model for infill masonry panels", J. Earthq. Eng., 14(3), 390-416. https://doi.org/10.1080/13632460903086044.
  52. Smith, B. (1967), "Methods for predicting the lateral stiffness and strength of multi-storey infilled frames", Building Sci., 2(3), 247-257. https://doi.org/10.1016/0007-3628(67)90027-8.
  53. Smith, B.S. (1962), "Lateral stiffness of infilled frames", J. Struct. Division, 88(6), 183-226. https://doi.org/10.1061/JSDEAG.0000849
  54. Smith, B.S. (1966), "Behavior of square infilled frames", J. Struct. Division, 92(1), 381-404. https://doi.org/10.1061/JSDEAG.0001387
  55. Smyrou, E., Blandon, C., Antoniou, S., Pinho, R. and Crisafulli, F. (2011), "Implementation and verification of a masonry panel model for nonlinear dynamic analysis of infilled RC frames", Bull. Earthq. Eng., 9(5), 1519-1534. https://doi.org/10.1007/s10518-011-9262-6.
  56. Tanganelli, M., Rotunno, T. and Viti, S. (2017), "On the modelling of infilled RC frames through strut models", Cogent Eng., 4(1), 1371578. https://doi.org/10.1080/23311916.2017.1371578
  57. Tarque, N., Candido, L., Camata, G. and Spacone, E. (2015), "Masonry infilled frame structures: State-of-the-art review of numerical modelling", Earthq. Struct., 8(1), 225-251. http://doi.org/10.12989/eas.2015.8.1.895.
  58. Tasnimi, A.A. and Mohebkhah, A. (2011), "Investigation on the behavior of brick-infilled steel frames with openings, experimental and analytical approaches", Eng. Struct., 33(3), 968-980. https://doi.org/10.1016/j.engstruct.2010.12.018.
  59. Yekrangnia, M. and Mohammadi, M. (2017), "A new strut model for solid masonry infills in steel frames", Eng. Struct., 135, 222-235. https://doi.org/10.1016/j.engstruct.2016.10.048.