
J. Appl. Math. & Informatics Vol. 37(2019), No. 3 - 4, pp. 235 - 244
https://doi.org/10.14317/jami.2019.235

(L, ∗)-FILTERS AND (L, ∗,�)-LIMIT SPACES†

JUNG MI KO AND YONG CHAN KIM∗

Abstract. In this paper, we introduce the notion of the (L, ∗,�)-limit

spaces and investigate the relations (L, ∗,�)-limit spaces and (L, ∗)-filters
on ecl-premonoid. We give their examples.
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1. Introduction

For the case that the lattice is a frame, L-filters were introduced in [2,3].
Höhle and Sostak [4] introduced the concept of L-filters for a complete quasi-
monoidal lattice L. For the case that the lattice is a stsc quantale, L-filters
were introduced in [9]. Lattice-valued convergence spaces were introduced for
the case that the lattice is a frame [5-8] or for the case of complete residuated
lattice [11] or for the case of ecl-premonoid [10]. Jäger [5-6] developed stratified
L-convergence structures based on the concepts of L-filters where L is a com-
plete Heyting algebra. Yao [11] extended stratified L-convergence structures to
complete residuated lattices and investigated between stratified L-convergence
structures and L-fuzzy topological spaces. As an extension of Yao [11], Fang
[7,8] introduced L-ordered convergence structures on L-ordered filters and in-
vestigated between L-ordered convergence structures and strong L-topological
spaces.

In this paper, we define the (L, ∗,�)-limit spaces as an extension of L-
convergence space on ecl-premonoid in Orpen’s sense [10]. From (L, ∗)-filters,
we can obtain various (L, ∗,�)-limit structures and give their examples.
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2. Preliminaries

Definition 2.1. [10] A complete lattice (L,≤,⊥,>) with bottom element ⊥
and top element > is called a GL-monoid (L,≤, ∗,⊥,>) with a binary operation
∗ : L× L→ L satisfying the following conditions:

(G1) a ∗ > = a, for all a ∈ L,
(G2) a ∗ b = b ∗ a, for all a, b ∈ L,
(G3) a ∗ (b ∗ c) = (a ∗ b) ∗ c, for all a, b ∈ L,
(G4) if a ≤ b, there exists c ∈ L such that b ∗ c = a,
(G5) a ∗

∨
i∈Γ bi =

∨
i∈Γ(a ∗ bi).

We can define an implication operator:

a⇒ b =
∨
{c | a ∗ c ≤ b}.

Example 2.2. (1) A continuous t-norm ([0, 1],≤, ∗) is a GL-monoid.
(2) A frame (L,≤,∧) is a GL-monoid.

Definition 2.3. [10] A complete lattice (L,≤,⊥,>) is called a cl-premonoid
(L,≤,�) with a binary operation � : L× L→ L satisfying the following condi-
tions:

(CL1) a ≤ a�> and a ≤ >� a, for all a ∈ L,
(CL2) if a ≤ b and c ≤ d, then a� c ≤ b� d,
(CL3) a�

∨
i∈Γ bi =

∨
i∈Γ(a� bi) and

∨
j∈Γ aj � b =

∨
j∈Γ(aj � b).

We can define an implication operator:

a→ b =
∨
{c | a� c ≤ b}.

Example 2.4. (1) Every GL-monoid (L,≤, ∗) is a cl-premonoid.
(2) Define maps �i : [0, 1]× [0, 1]→ [0, 1] as follows:

x�1 y = x
1
p · y

1
p (p ≥ 1), x�2 y = (xp + yp) ∧ 1(p ≥ 1).

Then (L,≤,�i) is a cl-premonoid for i = 1, 2.

Definition 2.5. [10] A complete lattice (L,≤,⊥,>) is called an ecl-premonoid
(L,≤,�, ∗) with a GL-monoid (L,≤, ∗) and a cl-premonoid (L,≤,�) which sat-
isfy the following condition:

(D) (a� b) ∗ (c� d) ≤ (a ∗ c)� (b ∗ d), for all a, b, c, d ∈ L.
An ecl-premonoid (L,≤,�, ∗) is called an M-ecl-premonoid if it satisfies the

following condition:
(M) a ≤ a� a for all a ∈ L.

Example 2.6. (1) Let (L,≤, ∗) be a GL-monoid and (L,≤,∧) is a cl-premonoid.
Then (L,≤,∧, ∗) is an M-ecl-premonoid.

(2) Let (L,≤, ∗) be a GL-monoid. Then (L,≤, ∗, ∗) is an ecl-premonoid. If
∗ = ·, 0.5 6≤ 0.5 · 0.5 = 0.25. (L,≤, ·, ·) is not an M-ecl-premonoid.

(3) Let (L,≤, ·) be a GL-monoid. Define a map � : [0, 1] × [0, 1] → [0, 1] as
x� y = (x+ y) ∧ 1. Then (L,≤,�, ·) is not an M-cl-premonoid because

0.7 = (0.3� 0.4) · (0.5� 0.7) 6≤ (0.3 · 0.5)� (0.4 · 0.7) = 0.15 + 0.28 = 0.43
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(4) Let (L,≤, ·) be a GL-monoid. Define a map � : [0, 1] × [0, 1] → [0, 1] as

x� y = x
1
3 · y 1

3 . Then (L,≤,�, ·) is an M-cl-premonoid.

Lemma 2.7. Let (L,≤,�, ∗) be an ecl-premonoid. For each a, b, c, d, ai, bi ∈ L
and for ↑∈ {→,⇒}, we have the following properties.

(1) If b ≤ c, then a� b ≤ a� c and a ∗ b ≤ a ∗ c.
(2) a� b ≤ c iff a ≤ b→ c. Moreover, a ∗ b ≤ c iff a ≤ b⇒ c.
(3) If b ≤ c, then a ↑ b ≤ a ↑ c and c ↑ a ≤ b ↑ a.
(4) a ≤ b iff a⇒ b = >.
(5) a ∗ b ≤ a� b, a→ b ≤ a⇒ b and a ∗ (b� c) ≤ (a ∗ b)� c.
(6) (a ↑ b)� (c ↑ d) ≤ (a� c) ↑ (b� d).
(7) (b ↑ c) ≤ (a� b) ↑ (a� c).
(8) (b ↑ c) ≤ (a ↑ b) ↑ (a ↑ c) and (b ↑ a) ≤ (a ↑ c) ↑ (b ↑ c).
(9) (b→ c) ≤ (a ↑ b)→ (a ↑ c) and (b ↑ a) ≤ (a→ c)→ (b ↑ c)
(10) ai ↑ bi ≤ (

∧
i∈Γ ai) ↑ (

∧
i∈Γ bi).

(11) ai ↑ bi ≤ (
∨
i∈Γ ai) ↑ (

∨
i∈Γ bi).

(12) (c ↑ a) ∗ (b→ d) ≤ (a→ b)→ (c ↑ d).

Proof. (1) Let b ≤ c. Then b∨c = c. By (L4), (a�b)∨ (a�c) = a� (b∨c) =
a� c. Thus (a� b) ≤ (a� c). Similarly, a ∗ b ≤ a ∗ c.

(2) and (3) follow from the definitions → and ⇒.
(4) Let a ≤ b. Since a ∗ > = a, then > ≤ a⇒ a ≤ a⇒ b.
Let a⇒ b = >. Then a = a ∗ > ≤ b.
(5) For (a ∗ c)� (d ∗ b) ≥ (a� d) ∗ (c� b), put c = d = >, then a� b ≥ a ∗ b.

Thus, a→ b ≤ a⇒ b. Moreover, we have

a ∗ (b� c) ≤ (a�>) ∗ (b� c) ≤ (a ∗ b)� (> ∗ c) = (a ∗ b)� c.
(6) Since (a� c) ∗ ((a⇒ b)� (c⇒ d)) ≤ (a ∗ (a⇒ b))� (c ∗ (c⇒ d)) ≤ b� d,

by (2), (a ⇒ b) � (c ⇒ d) ≤ (a � c) ⇒ (b � d). Similarly, (a → b) � (c → d) ≤
(a� c)→ (b� d).

(7) Since (a � b) ∗ (> � (b ⇒ c)) ≤ (a ∗ >) � (b ∗ (b ⇒ c)) ≤ a � c, by (2),
(b⇒ c) ≤ (a� b)⇒ (a� c). Similarly, (b→ c) ≤ (a� b)→ (a� c).

(9) It follows from:

a ∗ ((a⇒ b)� (b→ c)) ≤ (a�>) ∗ ((a⇒ b)� (b→ c))
≤ (a ∗ (a⇒ b))� (> ∗ (b→ c)) ≤ b� (b→ c) ≤ c.

(10) (
∧
i∈Γ ai)� (ai → bi) ≤

∧
i∈Γ(ai � (ai → bi)) ≤

∧
i∈Γ bi.

(11) (
∨
i∈Γ ai)� (ai → bi) ≤

∨
i∈Γ(ai � (ai → bi)) ≤

∨
i∈Γ bi.

(12)

c ∗
(

(a→ b)� ((c⇒ a) ∗ (b→ d))
)
≤
(
c ∗ ((c⇒ a) ∗ (b→ d))

)
� (a→ b)

≤
(
a ∗ (b→ d)

)
� (a→ b) ≤

(
a� (b→ d)

)
� (a→ b) ≤ b� (b→ d) ≤ d.

Hence (c ⇒ a) ∗ (b → d) ≤ (a → b) → (c ⇒ d). Similarly, (c → a) ∗ (b → d) ≤
(a→ b)→ (c→ d).
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Definition 2.8. [8,10,11] A mapping F : LX → L is called an (L, ∗)-filter on
X if it satisfies the following conditions:

(F1) F(1∅) = ⊥ and F(1X) = >, where 1∅(x) = ⊥, 1X(x) = > for x ∈ X.
(F2) F(f ∗ g) ≥ F(f) ∗ F(g), for each f, g ∈ LX ,
(F3) if f ≤ g, F(f) ≤ F(g).
An (L, ∗)-filter is called stratified if
(S) F(α ∗ f) ≥ α ∗ F(f) for each f ∈ LX and α ∈ L.

The pair (X,F) is called an (resp. a stratified)(L, ∗)-filter space.

Let (X,F1) and (Y,F2) be two (L, ∗)-filter spaces and φ : X → Y called an
L-filter map if F2(g) ≤ F1(φ←(g)) for all g ∈ LY where φ←(g) = g ◦ φ.

Example 2.9. (1) Define a map [x] : LX → L as [x](f) = f(x). Then [x] is a
stratified (L, ∗)-filter on X.

(2) Define a map inf : LX → L as inf(f) =
∧
x∈X f(x). Then inf is a stratified

(L, ∗)-filter on X.
(3)If F and G are (L, ∗)-filters on X, F � G is an (L, ∗)-filter on X because

(F � G)(f ∗ g) = F(f ∗ g)� G(f ∗ g) = (F(f) ∗ F(g))� (G(f) ∗ G(g))
≥ (F(f)� G(f)) ∗ (F(g)� G(g)) = (F � G)(f) ∗ (F � G)(g).

Definition 2.10. [4] A map I : LX → LX is called an interior (L, ∗)-operator
on X if it satisfies

(I1) I(f) ≤ f for each f ∈ LX ,
(I2) if f ≤ g, then I(f) ≤ I(g),
(I3) I(f ∗ g) ≥ I(f) ∗ I(g),
(I4) I(a ∗ f) ≥ a ∗ I(f) for each a ∈ L and f ∈ LX .

3. (L, ∗,�)-limit spaces

In this section, we always assume that (L,≤,�, ∗) is an ecl-premonoid.

Definition 3.1. Let F∗(X) is a family of (L, ∗)-filters on X. A map lim :
F∗(X)→ LX is called an (L, ∗,�)-limit structure on X if it satisfies the following
conditions:

(L1) lim[x](x) = > for all x ∈ X.
(L2) If F ≤ G, then limF(x) ≤ limG(x).
(L3) limF(x)� limG(x) ≤ lim(F � G)(x).
The pair (X, lim) is called an (L, ∗,�)-limit space.
A map lim : F s∗ (X)→ LX is called a stratified (L, ∗,�)-limit structure on X

where F s∗ (X) is a family of stratified (L, ∗)-filters.

Let (X, limX) and (Y, limY ) be (L, ∗,�)-limit spaces. A map φ : (X, limX)→
(Y, limY ) is called continuous if for all x ∈ X and F ∈ F∗(X),

lim
X
F(x) ≤ lim

Y
φ⇒(F)(φ(x)).

We say lim1 is finer than lim2 (or lim2 is coarser than lim1) iff lim1 ≤ lim2.
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We define lim>, lim⊥ : F∗(X)→ LX as follows: for each x ∈ X,

lim
>

(F)(x) =

{
>, if F ≥ [x],
⊥, otherwise.

lim
⊥

(F)(x) = >, ∀F ∈ F∗(X).

Then lim> (resp. lim⊥) is the finest (resp. coarsest) (L, ∗,�) limit structure.

Remark 3.1. In above definition, a map lim : F s∗ (X)→ LX is a SL-generalized
convergence operator in Orpen’s sense [10] if it satisfies (L1) and (L2). A strati-
fied (L, ∗,∧)-limit structure on X is called a SL-strong limit structure in Orpen’s
sense [10].

Theorem 3.2. Let lim1 and lim2 be (L, ∗,�)-limit structures on X. We define
a map lim1�∗ lim2 : F∗(X)→ LX as follows:

(lim
1
�∗ lim

2
)(F)(x) =

∨
{lim

1
(F1)(x)� lim

2
(F2)(x) | F1 ∗ F2 ≤ F}.

Then (1) lim1�∗ lim2 is an (L, ∗,�)-limit structure on X which is coarser
than lim1 and lim2. In particular, if � = ∗, lim1 ∗∗ lim2 is the finest (L, ∗, ∗)-
limit structure on X which is coarser than lim1 and lim2.

(2) lim1 ∧ lim2 is the coarsest (L, ∗,�)-limit structure on X which is finer
than lim1 and lim2.

Proof. (1) (L1). Since [x] ∗ [x] ≤ [x], we have

(lim
1
�∗ lim

2
)([x])(x) ≥ lim

1
([x])(x)� lim

2
([x])(x) = >.

(L2) is easy. (L3)

(lim1�∗ lim2)(F)(x)� (lim1�∗ lim2)(G)(x)
=
∨
{lim1(F1)(x)� lim2(F2)(x) | F1 ∗ F2 ≤ F}

�
∨
{lim1(G1)(x)� lim2(G2)(x) | G1 ∗ G2 ≤ G}

≤
∨
{lim1(F1)(x)� lim2(F2)(x)� lim1(G1)(x)� lim2(G2)(x)

| F1 ∗ F2 ≤ F ,G1 ∗ G2 ≤ G}
≤
∨
{lim1(F1 � G1)(x)� lim2(F2 � G2)(x) | (F1 ∗ F2)� (G1 ∗ G2) ≤ F � G}

( Since � dominates ∗,)
≤
∨
{lim1(F1 � G1)(x)� lim2(F2 � G2)(x) | (F1 � G1) ∗ (F2 � G2) ≤ F � G}

≤ (lim1�∗ lim2)(F � G)(x).

Since F∗[x] ≤ F for each x ∈ X, we have (lim1�∗ lim2)(F)(x) ≥ limi(F)(x)�
limj([x])(x) ≥ limi(F)(x) for i 6= j ∈ {1, 2}.

If ∗ = � and lim ≥ limi for i = 1, 2, then lim ≥ (lim1 ∗∗ lim2) from

lim(F)(x) ≥
∨
{lim(F1 ∗ F2)(x) | F1 ∗ F2 ≤ F}

≥
∨
{lim(F1)(x) ∗ lim(F2)(x) | F1 ∗ F2 ≤ F}

≥
∨
{lim1(F1)(x) ∗ lim2(F2)(x) | F1 ∗ F2 ≤ F}

= (lim1 ∗∗ lim2)(F)(x).
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(2)

(lim1 ∧ lim2)(F)� (lim1 ∧ lim2)(G)
≤ (lim1(F)� lim1(G)) ∧ (lim2(F)� lim2(G))
≤ lim1(F � G) ∧ lim2(F � G) = (lim1 ∧ lim2)(F � G).

If lim ≤ limi for i = 1, 2, then lim ≤ (lim1 ∧ lim2).

Theorem 3.3. For each x ∈ X, let Hx : F∗(X)→ LL
X

be a map satisfying the
following conditions: for ↑∈ {⇒,→},

(H1) Hx([x])(f) ↑ [x](f) = >, for each f ∈ LX .
(H2) If F ≤ G, then Hx(F) ≥ Hx(G).
(H3) Hx(F � G) ≤ Hx(F)�Hx(G).

We define a map lim↑H : F (X)→ LX as follows:

lim↑H(F)(x) =
∧
f∈LX (Hx(F)(f) ↑ F(f)).

Then the following properties hold.

(1) lim↑H is an (L, ∗,�)-limit structure for ↑∈ {⇒,→}.
(2) lim↑HX(F)(x) ↑ lim↑HY (ψ⇒(F)(ψ(x)) ≥

∧
g∈LY

(
H
ψ(x)
Y (ψ⇒(F))(g) ↑ Hx

X(F)(ψ←(g))
)
.

(3) If ψ : (X,Hx
X) → (Y,H

ψ(x)
Y ) is a map such that H

ψ(x)
Y (ψ⇒(F))(g) ≤

(Hx
X(F)(ψ←(g)) for each x ∈ X, g ∈ LX ,F ∈ F∗(X), then ψ : (X, lim⇒HX) →

(Y, lim⇒HY ) is continuous.

Proof. (L1) Since Hx([x])(f) ↑ [x](f) = >,

lim↑H([x])(x) =
∧
f∈LX (Hx([x])(f) ↑ [x](f)) = >.

(L2) If F ≤ G, by (H2) an Lemma 2.7(3),

lim↑H(F)(x) =
∧
f∈LX (Hx(F)(f) ↑ F(f)) ≤

∧
f∈LX (Hx(G)(f) ↑ G(f)) = lim↑H(G)(x).

(L3) For each F ,G ∈ F (X),

lim↑H(F)(x)� lim↑H(G)(x)

=
(∧

f∈LX (Hx(F)(f) ↑ F(f))
)
�
(∧

g∈LX (Hx(G)(g) ↑ G(g))
)

≤
∧
f∈LX

∧
g∈LX

(
(Hx(F)(f) ↑ F(f))� (Hx(G)(g) ↑ G(g))

)
≤
∧
f∈LX

∧
g∈LX

(
(Hx(F)(f)�Hx(G)(g)) ↑ (F(f)� G(g))

)
(by Lemma 7(6))

≤
∧
f∈LX

(
(Hx(F)(f)�Hx(G)(f)) ↑ (F(f)� G(f))

)
≤
∧
f∈LX

(
(Hx(F � G)(f)) ↑ ((F � G)(f))

)
= lim↑H(F � G)(x).
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(2) For each F ∈ F (X),

lim↑HX(F)(x) ↑ lim↑HY (ψ⇒(F)(ψ(x))

=
(∧

f∈LX (Hx
X(F)(f) ↑ F(f))

)
↑
(∧

g∈LY (H
ψ(x)
Y (ψ⇒(F))(g) ↑ ψ⇒(F)(g))

)
≥
(∧

g∈LY (Hx
X(F)(ψ←(g)) ↑ F(ψ←(g)))

)
↑(∧

g∈LY (H
ψ(x)
Y (ψ⇒(F))(g) ↑ ψ⇒(F)(g))

)
≥
∧
g∈LY

(
(Hx

X(F)(ψ←(g)) ↑ F(ψ←(g))) ↑ (H
ψ(x)
Y (ψ⇒(F))(g) ↑ F(ψ←(g))

)
(by Lemma 2.7(8))

≥
∧
g∈LY

(
H
ψ(x)
Y (ψ⇒(F))(g) ↑ Hx

X(F)(ψ←(g))
)
.

(3) For ↑=⇒, since a⇒ b = > iff a ≤ b from Lemma 2.7(4), lim⇒HX(F)(x) ≤
lim⇒HY (ψ⇒(F)(ψ(x)). Hence ψ : (X, lim⇒HX)→ (Y, lim⇒HY ) is continuous.

Example 3.4. Let X = {x1, x2} and Y = {y1, y2} be sets, (L = [0, 1], ∗) an
GL-monoid with a ∗ b = a · b and f, g ∈ [0, 1]X as follows:

f(x1) = 1, f(x2) = 0.6, g(x1) = 0.5, g(x2) = 1.

Define ([0, 1], ∗)-filters as F ,G : [0, 1]X → [0, 1] as follows:

F(h) =

 1, if h = 1X ,
0.4n, if fn ≤ h 6≥ fn−1, n ∈ N
0, otherwise.

G(h) =

 1, if h = 1X ,
0.3n, if gn ≤ h 6≥ gn−1, n ∈ N
0, otherwise.

where kn = kn−1 ∗ h and h0 = 1X for h ∈ {f, g}.
(1) Let x � y = x

1
3 · y 1

3 . Define a map lim : F (X) → [0, 1]X as follows, for
x ∈ {x1, x2},

lim(G)(x) =

{
1, if G ≥ [x],
0.5, if G 6≥ [x].

Since F(f) = 0.4 < [x2](f) = 0.6, it does not satisfy the condition (L3) of
Definition 1 from:

(0.5)
2
3 = lim(F)(x2)� lim(F)(x2) 6≤ lim(F � F)(x2) = 0.5.

Hence lim is not an ([0, 1], ∗,�)-limit structure on X.

(2) Define two constant maps Hx1 , Hx2 : F (X)→ LL
X

as follows

Hx1(H) = F , Hx2(H) = G.
(2-a) Give � = ∧. Then ([0, 1], ∗,∧) is an M-ecl-premonoid. We obtain

a → b = 1 if a ≤ b and a → b = b otherwise. It satisfies the conditions (H1),
(H2) and (H3) because

0.4n = F(h) ≤ fn(x1) = [x1](h) = 1, 0.3n = G(h) ≤ gn(x2) = [x2](h) = 1
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Hx1(F1 ∧ F2) = F = Hx1(F1) ∧Hx1(F2)

Hx2(F1 ∧ F2) = G = Hx2(F1) ∧Hx2(F2).

For ↑=→, lim→H is an (L, ∗,∧)-limit structure as follows:

lim→H (H)(x1) =
∧
f∈LX (Hx1(H)(f)→ H(f)) =

∧
n∈N (0.4n → H(fn))

lim→H (H)(x2) =
∧
n∈N (0.3n → H(gn))

(2-b) For ∗, we obtain a ⇒ b = 1 if a ≤ b and a ⇒ b = b
a otherwise. It

satisfies the conditions (H1), (H2) and (H3) in (2-a). Thus lim⇒H is an (L, ∗,∧)-
limit structure as follows:

lim⇒H (H)(x1) =
∧
f∈LX (Hx1(H)(f)⇒ H(f)) =

∧
n∈N (0.4n ⇒ H(fn))

lim⇒H (H)(x2) =
∧
n∈N (0.3n ⇒ H(gn)).

(2-c) Define ψ : (X,Hxi

X )→ (Y,H
ψ(xi)
Y ) is a map with ψ(xi) = yi for i = 1, 2

and

Hy1
Y (H) = ψ⇒(F), Hy2

Y (H) = ψ⇒(G).

For � = ∧, ∗ = ·, since a → b = > iff a ≤ b iff a ⇒ b = >, we have, for each
x ∈ X, g ∈ LX ,

H
ψ(x1)
Y (ψ⇒(F))(g) = ψ⇒(F)(g) = F(ψ←(g)) = Hx1

X (F)(ψ←(g))

H
ψ(x2)
Y (ψ⇒(F))(g) = ψ⇒(G)(g) = G(ψ←(g)) = Hx2

X (F)(ψ←(g))

lim↑HX(F)(x) ↑ lim↑HY (ψ⇒(F)(ψ(x))

≥
∧
g∈LY

(
H
ψ(x)
Y (ψ⇒(F))(g) ↑ Hx

X(F)(ψ←(g))
)

= >.

Hence ψ : (X, lim↑HX)→ (Y, lim↑HY ) is continuous for each ↑∈ {⇒,→}.
(3) Define a constant map Hx2 : F (X)→ LL

X

as follows: for all H ∈ F∗(X),

Hx2(H) = G.
For � = ∗, since Hx2(H1 ∗ H2)(g) = G(g) = 0.3 6≤ Hx2(H1)(g) ∗Hx2(H2)(g) =
G(g) ∗ G(g) = 0.09, it does not satisfy the condition (H3). Put H1(g) = 0.4.
Then

lim
H

(H1 ∗ H2)(x2) = 0.3→ (H1 ∗ H1)(g) =
8

15
,

lim
H

(H1)(x2) ∗ lim
H

(H2)(x2) = (0.3→ H1(g)) ∗ (0.3→ H2(g)) = 1.

So, limH(H1 ∗ H2)(x2) = 8
15 6≥ 1 = limH(H1)(x2) ∗ limH(H2)(x2). Hence lim⇒H

is not an (L, ∗, ∗)-limit structure.

(4) Define x � y = x
1
3 · y 1

3 and two constant maps Hx1 , Hx2 as same in (2).

We obtain a → b = 1 if a ≤ b3 and a → b = b3

a otherwise. It satisfies the
conditions (H1), (H2) and (H3) because

0.4n = F(h) ≤ fn(x1) = [x1](h) = 1, 0.3n = G(h) ≤ gn(x2) = [x2](h) = 1

Hx1(F1 �F2)(f) = F(f) ≤ Hx1(F1)�Hx1(F2) = F(f)�F(f) = (F(f))
2
3

Hx2(F1 �F2)(g) = G(g) ≤ G(g)� G(g) = (G(g))
2
3 .
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Hence lim→H is an (L, ∗,�)-limit structure as follows:

lim→H (H)(x1) =
∧
f∈LX (Hx1(H)(f)→ H(f)) =

∧
n∈N (0.4n → H(fn))

lim→H (H)(x2) =
∧
n∈N (0.3n → H(gn)).

Moreover, lim⇒H is an (L, ∗,�)-limit structure as same as in (2-b).

Example 3.5. Let (L, ∗,�) be an M-ecl-premonoid. Let a map Hx : F (X) →
LL

X

defined as Hx(F) = [x] for all F ∈ F (X). For ↑=⇒ since Hx([x])(f) =
[x](f) ≤ [x](f) and

Hx(F � G)(f) = [x](f) ≤ Hx(F)(f)�Hx(G)(f) = [x](f)� [x](f),

it satisfies the following conditions (H1),(H2)and (H3). Thus lim⇒H (F)(x) =∧
f∈LX (Hx(F)(f) → F(f)) =

∧
f∈LX ([x](f) → F(f)). Then lim⇒H is an

(L, ∗,�)-limit structure.

Define ψ : (X,Hx
X)→ (Y,H

ψ(x)
Y ) is a map with H

ψ(x)
Y (H) = [ψ(x)]. Since, for

each x ∈ X, g ∈ LX ,

H
ψ(x)
Y (ψ⇒(F))(g) = [ψ(x)](g) = [x](ψ←(g)) = Hx

X(F)(ψ←(g))

then ψ : (X, lim⇒HX)→ (Y, lim⇒HY ) is continuous.

Example 3.6. Let (L, ∗,�) be an M-ecl-premonoid. Let I : LX → LX be an

(L, ∗)-interior operator. Let a map Hx : F (X) → LL
X

defined as Hx(F)(f) =
I(f)(x) for all F ∈ F (X). For ↑=⇒, since Hx(I(−)(x))(f) = I(f)(x) ≤
[x](f) = f(x) and Hx(F�G)(f) = I(f)(x) ≤ Hx(F)(f)�Hx(G)(f) = I(f)(x)�
I(f)(x), it satisfies the following conditions (H1),(H2)and (H3).

lim⇒H (F)(x) =
∧
f∈LX (Hx(F)(f)⇒ F(f))

=
∧
f∈LX (I(f)(x)⇒ F(f))

Then lim⇒H is an (L, ∗,�)-limit structure.
Let (X, IX) and (Y, IY ) be an (L, ∗)-interior spaces. Define a surjective

map ψ : (X,Hx
X) → (Y,H

ψ(x)
Y ) as Hx

X(F) = IX(−)(x) and H
ψ(x)
Y (H) =

IY (−)(ψ(x)). Then

lim⇒HX(F)(x)⇒ lim⇒HY (ψ⇒(F)(ψ(x))

≥
∧
g∈LY

(
ψ←(IY (g))(x)⇒ IX(ψ←(g))(x)

)
.
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