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A NOTE ON THE SOLUTION EQUIVALENCE OF GENERAL

MINIMUM VARIANCE AND MINIMAX DISPARITY

PROBLEMS FOR OWA OPERATOR†

DUG HUN HONG

Abstract. This note provides the solution equivalence of general mini-

mum variance and minimax disparity problems for OWA operator. This

result generalize a main theorem of Liu [International Journal of Approxi-
mate Reasoning, 48 (2008) 598-627.]
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1. Introduction and preliminaries

Liu [6, Theorem 2] considered a general convex OWA operator optimization
problem with given orness lenel:

Minimize VW =

n∑
i=1

F (wi)

subject to orness(W ) =

n∑
i=1

n− i
n− 1

wi = α, 0 < α < 1, (1)

w1 + · · ·+ wn = 1, 0 ≤ wi, i = 1, · · · , n.

where F is a strictly convex function on [0, 1], and it is at least two order differ-
entiable.

When F (x) = x lnx, (1) becomes the maximum entropy OWA operator prob-
lem that was discussed in [2, 3, 8, 10]. F (x) = x2 in (1) corresponds to another
discussed minimum variance OWA operator problem [4,6]. More generally, when
F (x) = xp, p > 1, (1) becomes the OWA problem of Rényi entropy [9], which
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includes the maximum entropy and minimum variance OWA problem as special
cases.

Liu [7] solved problem (1) analytically using the Kuhn-Tucker second-order
sufficiency conditions for optimality [1, p.58]. The condition of the second dif-
ferentiability of F is essential to use the Kuhn-Tucker second-order sufficiency
conditions for optimality in proving the general OWA operator optimization
problem. Indeed, I do not need the second differentiability of F . In the follow-
ing session, we give a simple new proof for the problem (1) assuming continuous
first differentiability of F instead of the second differentiability of F.

Recently, Hong [5] considered a general minimax disparity ordered weighted
averaging (OWA) operator problem with given orness level:

Minimize max
i∈{1,··· ,n−1}

|F ′(wi)− F ′(wi+1)|

subject to orness(W ) =

n∑
i=1

n− i
n− 1

wi = α, 0 ≤ α ≤ 1, (2)

w1 + · · ·+ wn = 1, 0 ≤ wi, i = 1, · · · , n.
where F is a strictly convex function on [0,∞) and F ′(x) is continuous.

The main point is that the optimal solutions of the two problems (1) and (2)
are same. This result generalizes a main theorem of Liu [7, Theorem 13].

2. The solution equivalence of two models

Recently, Hong [5] proved the following result:

Theorem 2.1. Assume that F is strictly convex and F ′(x) is continuous. The
optimal solution for problem (2) with given orness level 0 < α < 1 is the weight-
ing function

w∗i = max
{

(F ′)−1(a∗i+ b∗), 0
}

where a∗, b∗ is determined by the constraints:{∑
i∈H

n−i
n−1 (F ′)−1(a∗i+ b∗) = α∑

i∈H(F ′)−1(a∗i+ b∗) = 1,

and H =
{
i|(F ′)−1(a∗i+ b∗) > 0

}
.

We now prove the following general convex OWA operator optimization prob-
lem with given orness level:

Minimize VW =

n∑
i=1

F (wi)

subject to orness(W ) =

n∑
i=1

n− i
n− 1

wi = α, 0 < α < 1, (3)

w1 + · · ·+ wn = 1, 0 ≤ wi, i = 1, · · · , n.
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where F is strictly convex on [0, 1] and F ′ is continuous on (0, 1).
It is noted that F is strictly convex if and only if F ′ is strictly increasing. If

F ′(x) is strictly increasing, then there are two possible cases:

F ′(0+) = −∞, F ′(0+) <∞,

where limx→0+ = F ′(0+). In case of F ′(0+) <∞, we define F ′(0+) = F ′(0).

Theorem 2.2. The optimal solutions of the two problems (2) and (3) are the
same. That is, they both have the form as

w∗i =

{
(F ′)−1(a∗i+ b∗), if (F ′)−1(a∗i+ b∗) > 0,

0, elsewhere,

where a∗, b∗ is determined by the constraints:{∑
i∈H

n−i
n−1 (F ′)−1(a∗i+ b∗) = α∑

i∈H(F ′)−1(a∗i+ b∗) = 1,

and H = {i|(F ′)−1(a∗i+ b∗) > 0}.

Proof. Let w∗i = max{(F ′)−1(a∗i+ b∗), 0} such that∑
iw∗i = n− (n− 1)α

(
⇔

n∑
i=1

n− i
n− 1

w∗i = α

)
(4)∑

w∗i = 1, (5)

and let wi, i = 1, · · · , n be a weighting vector such that

n∑
i=1

iwi = n− (n− 1)α, (6)

n∑
i=1

wi = 1, 0 ≤ wi, i = 1, · · · , n. (7)

We put wi = w∗i + βi, i = 1, · · · , n. Then, noting that

wi = βi, i /∈ H, (8)

we have, from (5) and (7),∑
i/∈H

wi +
∑
i∈H

βi =

n∑
i=1

βi = 0, (9)

since 1 =
∑n

i=1 wi =
∑n

i=1 w
∗
i +

∑n
i=1 βi = 1 +

∑n
i=1 βi. We also have, from (4)

and (6) ∑
i/∈H

iwi +
∑
i∈H

iβi =

n∑
i=1

iβi = 0, (10)
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since
∑n

i=1 iwi =
∑n

i=1 i(w
∗
i + βi) =

∑n
i=1 iw

∗
i +

∑n
i=1 iβi. We now show that

n∑
i=1

F (wi) ≥
n∑

i=1

F (w∗i ).

It is because, since F (x) − F (x0) ≥ F ′(x0)(x − x0) (the equality holds if and
only if x = x0) we have that

n∑
i=1

F (wi)−
n∑

i=1

F (w∗i ) =

n∑
i=1

F (w∗i + βi)−
n∑

i=1

F (w∗i )

≥
n∑

i=1

F ′(w∗i )βi = D (11)

Case 1) F ′(0+) = −∞
We assume that F ′(0+) = −∞. Then (F ′)−1(x) > 0 and hence H =

{1, 2, · · · , n}. Then, from (9) and (10),

D =
∑
i∈H

βi(a
∗i+ b∗)

= a∗
n∑
i

iβi + b∗
n∑
i

βi

= 0.

Case 2) F ′(0+) <∞
If F ′(0+) <∞, then F ′(w∗i ) = max{a∗i+b∗, F ′(0)}. If i ∈ H, then F ′(w∗i ) =

a∗i + b∗ > F ′(0). If i /∈ H, then (F ′)−1(a∗i + b∗) ≤ 0, and hence a∗i + b∗ ≤
F ′(0) = F ′(w∗i ). Then

D =
∑
i∈H

βi(a
∗i+ b∗) +

∑
i/∈H

βiF
′(0)

= a∗
∑
i∈H

iβi + b∗
∑
i∈H

βi +
∑
i/∈H

βiF
′(0)

= a∗

(
−
∑
i/∈H

iwi

)
+ b∗

(
−
∑
i/∈H

wi

)
+
∑
i/∈H

wiF
′(0)

=
∑
i/∈H

wi (F ′(0)− a∗i− b∗)

≥ 0, (12)

where the third equality comes from (8), (9) and (10). The equality in (11)
and (12) holds if and only if βi = 0, i = 1, 2, · · · , n if and only if wi = w∗i , i =
1, 2, · · · , n. This proves the uniqueness of W ∗. �
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