$(L, *, \odot)$-QUASIUNIFORM CONVERGENCE SPACES INDUCED BY OPERATORS

Jung Mi Ko ${ }^{\text {a }}$ and Yong Chan Kim ${ }^{\text {b,* }}$

Abstract

In this paper, we introduce quasiuniform convergence structure induced by operators on ecl-premonoid $(L, *, \odot)$. Moreover, we obtain $(L, *, \odot)$-quasiuniform convergence structure induced by two $(L, *, \odot)$-quasiuniform convergence structures and gives their examples.

1. Introduction

Gäher $[2,3]$ introduced the notions of fuzzy filters in a frame L. Höhle and Sostak [4] introduced the concept of L-filters for a complete quasimonoidal lattice L. For the case that the lattice is a stsc quantale, L-filters were introduced in [12]. Jäger [5-6] developed stratified L-convergence structures based on the concepts of L-filters where L is a complete Heyting algebra. Yao [15] extended stratified L-convergence structures to complete residuated lattices and investigated between stratified L convergence structures and L-fuzzy topological spaces. As an extension of Yao [15], Fang [7-11] introduced L-ordered convergence structures and (pre, quasi,semi) uniform convergence spaces on L-filters and investigated their relations. Ko and Kim [13] introduced the $(L, *, \odot)$-quasiuniform convergence spaces as an extension of Fang's uniform convergence spaces on ecl-premonoid in Orpen's sense [14].

In this paper, we introduce quasiuniform convergence structure induced by operators on ecl-premonoid $(L, *, \odot)$ and gives their examples. Moreover, we obtain $(L, *, \odot)$-quasiuniform convergence structure induced by two $(L, *, \odot)$-quasiuniform convergence structures.

[^0]
2. Preliminaries

Definition 2.1 ([14]). A complete lattice (L, \leq, \perp, \top) is called a GL-monoid (L, \leq , $*, \perp, \top$) with a binary operation $*: L \times L \rightarrow L$ satisfying the following conditions:
(G1) $a * \top=a$, for all $a \in L$,
(G2) $a * b=b * a$, for all $a, b \in L$,
(G3) $a *(b * c)=(a * b) * c$, for all $a, b \in L$,
(G4) if $a \leq b$, there exists $c \in L$ such that $b * c=a$,
(G5) $a * \bigvee_{i \in \Gamma} b_{i}=\bigvee_{i \in \Gamma}\left(a * b_{i}\right)$.
We can define an implication operator:

$$
a \Rightarrow b=\bigvee\{c \mid a * c \leq b\} .
$$

Remark 2.2 ($[1,4,14]$). (1) A continuous t-norm $([0,1], \leq, *)$ is a GL-monoid.
(2) A frame (L, \leq, \wedge) is a GL-monoid.

Definition 2.3 ($[1,4,14])$. A complete lattice (L, \leq, \perp, \top) is called a cl-premonoid (L, \leq, \odot) with a binary operation $\odot: L \times L \rightarrow L$ satisfying the following conditions:
(CL1) $a \leq a \odot \top$ and $a \leq \top \odot a$, for all $a \in L$,
(CL2) if $a \leq b$ and $c \leq d$, then $a \odot c \leq b \odot d$,
(CL3) $a \odot \bigvee_{i \in \Gamma} b_{i}=\bigvee_{i \in \Gamma}\left(a \odot b_{i}\right)$ and $\bigvee_{j \in \Gamma} a_{j} \odot b=\bigvee_{j \in \Gamma}\left(a_{j} \odot b\right)$.
We can define an implication operator:

$$
a \rightarrow b=\bigvee\{c \mid a \odot c \leq b\} .
$$

Definition 2.4 ($[1,4,14])$. A complete lattice (L, \leq, \perp, T) is called an ecl-premonoid $(L, \leq, \odot, *)$ with a GL-monoid $(L, \leq, *)$ and a cl-premonoid (L, \leq, \odot) which satisfy the following condition:
(D) $(a \odot b) *(c \odot d) \leq(a * c) \odot(b * d)$, for all $a, b, c, d \in L$.

An ecl-premonoid $(L, \leq, \odot, *)$ is called an M-ecl-premonoid if it satisfies the following condition:
(M) $a \leq a \odot a$ for all $a \in L$.

In this paper, we always assume that $(L, \leq, \odot, *)$ is an ecl-premonoid unless otherwise specified.

Lemma $2.5([1,4,13])$. Let $(L, \leq, \odot, *)$ be an ecl-premonoid. For each $a, b, c, d, a_{i}, b_{i} \in$ L and for $\uparrow \in\{\rightarrow, \Rightarrow\}$, we have the following properties.
(1) If $b \leq c$, then $a \odot b \leq a \odot c$ and $a * b \leq a * c$.
(2) $a \odot b \leq c$ iff $a \leq b \rightarrow c$. Moreover, $a * b \leq c$ iff $a \leq b \Rightarrow c$.
(3) If $b \leq c$, then $a \uparrow b \leq a \uparrow c$ and $c \uparrow a \leq b \uparrow a$.
(4) $a \leq b$ iff $a \Rightarrow b=\top$.
(5) $a * b \leq a \odot b, a \rightarrow b \leq a \Rightarrow b$ and $a *(b \odot c) \leq(a * b) \odot c$.
(6) $(a \uparrow b) \odot(c \uparrow d) \leq(a \odot c) \uparrow(b \odot d)$.
(7) $(b \uparrow c) \leq(a \odot b) \uparrow(a \odot c)$.
(8) $(b \uparrow c) \leq(a \uparrow b) \uparrow(a \uparrow c)$ and $(b \uparrow a) \leq(a \uparrow c) \uparrow(b \uparrow c)$.
(9) $(b \rightarrow c) \leq(a \uparrow b) \rightarrow(a \uparrow c)$ and $(b \uparrow a) \leq(a \rightarrow c) \rightarrow(b \uparrow c)$
(10) $a_{i} \uparrow b_{i} \leq\left(\bigwedge_{i \in \Gamma} a_{i}\right) \uparrow\left(\bigwedge_{i \in \Gamma} b_{i}\right)$.
(11) $a_{i} \uparrow b_{i} \leq\left(\bigvee_{i \in \Gamma} a_{i}\right) \uparrow\left(\bigvee_{i \in \Gamma} b_{i}\right)$.
(12) $(c \uparrow a) *(b \rightarrow d) \leq(a \rightarrow b) \rightarrow(c \uparrow d)$.

Definition $2.6([4,13])$. For $L^{X}=\{f \mid f: X \rightarrow L$ is a function $\}$, a mapping $\mathcal{F}: L^{X} \rightarrow L$ is called an $(L, *)$-filter on X if it satisfies the following conditions:
(F1) $\mathcal{F}\left(\perp_{X}\right)=\perp$ and $\mathcal{F}\left(\top_{X}\right)=\top$, where $\perp_{X}(x)=\perp, \top_{X}(x)=\top$ for $x \in X$.
(F2) $\mathcal{F}(f * g) \geq \mathcal{F}(f) * \mathcal{F}(g)$, for each $f, g \in L^{X}$,
(F3) if $f \leq g, \mathcal{F}(f) \leq \mathcal{F}(g)$.
The pair (X, \mathcal{F}) is called an $(L, *)$-filter space. We denote by $F_{*}(X)$ the set of all $(L, *)$-filters on X.

Theorem $2.7([13])$. Let $\mathcal{U}, \mathcal{V} \in F_{*}(X \times X)$. We define $\mathcal{U} \circ_{\odot} \mathcal{V}: L^{X \times X} \rightarrow L$ as follows:

$$
(\mathcal{U} \circ \odot \mathcal{V})(w)=\bigvee\{\mathcal{U}(u) \odot \mathcal{V}(v) \mid u \circ v \leq w\}
$$

where $u \circ v(x, z)=\bigvee_{y \in X}(u(x, y) * v(y, z))$.
(1) $u \circ v=\perp_{X \times X}$ implies $\mathcal{U}(u) \odot \mathcal{V}(v)=\perp$ iff $(\mathcal{U} \circ \odot \mathcal{V}) \in F_{*}(X \times X)$.
(2) If $\mathcal{U}\left(1_{\triangle}\right)=\top$ where $1_{\triangle}(x, x)=\top$ and $1_{\triangle}(x, y)=\perp$ for $x \neq y \in X, \mathcal{U} \circ \mathcal{U} \geq \mathcal{U}$.
(3) $[(x, x)] \circ_{*}[(x, x)]=[(x, x)]$.
(4) $\bigwedge_{x \in X}[(x, x)] \circ_{*} \bigwedge_{x \in X}[(x, x)]=\bigwedge_{x \in X}[(x, x)]$.

Definition $2.8([13])$. A map $\Lambda: F_{*}(X \times X) \rightarrow L$ is called an $(L, *, \odot)$-quasiuniform convergence structure on X if it satisfies the following conditions:
$(\mathrm{QC} 1) \Lambda([(x, x)])=\top$, for each $x \in X$.
(QC2) If $\mathcal{U} \leq \mathcal{V}$, then $\Lambda(\mathcal{U}) \leq \Lambda(\mathcal{V})$.
$(\mathrm{QC} 3) ~ \Lambda(\mathcal{U}) \odot \Lambda(\mathcal{V}) \leq \Lambda(\mathcal{U} \odot \mathcal{V})$.
$(\mathrm{QC} 4) ~ \Lambda(\mathcal{U}) \odot \Lambda(\mathcal{V}) \leq \Lambda\left(\mathcal{U} \circ_{\odot} \mathcal{V}\right)$ where $\mathcal{U} \circ_{\odot} \mathcal{V} \in F_{*}(X \times X)$.
The pair (X, Λ) is called an $(L, *, \odot)$-quasiuniform convergence space.

An $(L, *, \odot)$-quasiuniform convergence space is called an $(L, *, \odot)$-uniform convergence space if it satisfies the following condition;
(U) $\Lambda(\mathcal{U}) \leq \Lambda\left(\mathcal{U}^{-1}\right)$ where $\mathcal{U}^{-1}(u)=\mathcal{U}\left(u^{-1}\right)$ and $u^{-1}(x, y)=u(y, x)$ for $x, y \in X$.

We say Λ_{1} is finer than Λ_{2} (or Λ_{2} is coarser than Λ_{1}) iff $\Lambda_{1} \leq \Lambda_{2}$.
We define $\Lambda_{\top}, \Lambda_{\perp}: F_{*}(X \times X) \rightarrow[0,1]$ as follows:

$$
\Lambda_{\top}(\mathcal{W})=\left\{\begin{array}{ll}
\top, & \text { if } \mathcal{W} \geq[(x, x)], \forall x \in X \\
\perp, & \text { otherwise. }
\end{array} \quad \Lambda_{\perp}(\mathcal{W})=\top, \forall \mathcal{W} \in F_{*}(X \times X)\right.
$$

Then $\Lambda_{\top}\left(\right.$ resp. $\left.\Lambda_{\perp}\right)$ is the finest (resp. coarsest) $(L, *, \odot)$-quasiuniform convergence structure.

Let $\left(X, \Lambda_{X}\right)$ and $\left(Y, \Lambda_{Y}\right)$ be $(L, *, \odot)$-quasiuniform convergence spaces. A map $\psi:\left(X, \Lambda_{X}\right) \rightarrow\left(Y, \Lambda_{Y}\right)$ is called quasiuniformly continuous if for all $\mathcal{U} \in F_{*}(X \times X)$, $\Lambda_{X}(\mathcal{U}) \leq \Lambda_{Y}((\psi \times \psi) \Rightarrow(\mathcal{U}))$.

3. $(L, *, \odot)$-Quasiuniform Convergence Spaces induced by Operators

Theorem 3.1. Let $M: F_{*}(X \times X) \rightarrow L^{L^{X \times X}}$ be maps satisfying the following conditions:
(M1) $M([(x, x)]) \uparrow[(x, x)]=\mathrm{T}$, for each $\uparrow \in\{\rightarrow, \Rightarrow\}$ and $x \in X$.
(M2) If $\mathcal{U} \leq \mathcal{V}$, then $M(\mathcal{U}) \geq M(\mathcal{V})$.
$(\mathrm{M} 3) \quad M(\mathcal{U} \odot \mathcal{V}) \leq M(\mathcal{U}) \odot M(\mathcal{V})$.
(M4) $M(\mathcal{U} \circ \odot \mathcal{V}) \leq M(\mathcal{U}) \circ \odot M(\mathcal{V})$.
For each $\uparrow \in\{\rightarrow, \Rightarrow\}$, we define a map $\Lambda^{M \uparrow}: F_{*}(X \times X) \rightarrow L$ as follows:

$$
\Lambda^{M \uparrow}(\mathcal{U})=\bigwedge_{u \in L^{X \times X}}(M(\mathcal{U})(u) \uparrow \mathcal{U}(u)) .
$$

Then the following properties hold.
(1) $\Lambda^{M \uparrow}$ is an $(L, *, \odot)$ quasi-uniform convergence structure.
(2) If $\psi:\left(X, M_{X}\right) \rightarrow\left(Y, M_{Y}\right)$ is a map such that $M_{Y}((\psi \times \psi) \Rightarrow(\mathcal{U}))(v) \leq$ $M_{X}(\mathcal{U})\left((\psi \times \psi)^{\leftarrow}(v)\right)$ for each $\mathcal{U} \in F_{*}(X \times X)$, then $\psi:\left(X, \Lambda_{X}^{M \uparrow}\right) \rightarrow\left(Y, \Lambda_{Y}^{M \uparrow}\right)$ is quasi-uniformly continuous.

Proof. (1) (QC1) Since $M([(x, x)]) \uparrow[(x, x)]=\top$,

$$
\Lambda^{M \uparrow}([(x, x)])=\bigwedge_{u \in L^{X \times X}}(M([(x, x)])(u) \uparrow[(x, x)](u))=\top .
$$

(QC3) For each $\mathcal{U}, \mathcal{V} \in F_{*}(X \times X)$, by Lemma 2.5(6),

$$
\begin{aligned}
& \Lambda^{M \uparrow}(\mathcal{U}) \odot \Lambda^{M \uparrow}(\mathcal{V}) \\
& =\left(\bigwedge_{u \in L^{X \times X}}(M(\mathcal{U})(u) \uparrow \mathcal{U}(u))\right) \odot\left(\bigwedge_{v \in L^{X \times X}}(M(\mathcal{V})(v) \uparrow \mathcal{V}(v))\right) \\
& \leq \bigwedge_{u \in L^{X \times X}} \bigwedge_{v \in L^{X \times X}}((M(\mathcal{U})(u) \uparrow \mathcal{U}(u)) \odot(M(\mathcal{V})(v) \uparrow \mathcal{V}(v))) \\
& \leq \bigwedge_{u \in L^{X \times X}} \bigwedge_{v \in L^{X \times X}}(M(\mathcal{U})(u) \odot M(\mathcal{V})(v) \uparrow \mathcal{U}(u) \odot \mathcal{V}(v)) \\
& \leq \bigwedge_{u \in L^{X \times X}}(M(\mathcal{U})(u) \odot M(\mathcal{V})(u) \uparrow \mathcal{U}(u) \odot \mathcal{V}(u)) \\
& \leq \bigwedge_{u \in L^{X \times X}}(M(\mathcal{U} \odot \mathcal{V})(u) \uparrow(\mathcal{U} \odot \mathcal{V})(u)) \\
& =\Lambda^{M \uparrow}(\mathcal{U} \odot \mathcal{V}) .
\end{aligned}
$$

(QC4) For each $\mathcal{U}, \mathcal{V} \in F_{*}(X \times X)$, by Lemma 2.5(6),

$$
\begin{aligned}
& \Lambda^{M \uparrow}(\mathcal{U} \circ \odot \mathcal{V}) \\
& =\bigwedge_{u \in L^{X \times X}}(M(\mathcal{U} \circ \odot \mathcal{V})(u) \uparrow(\mathcal{U} \circ \odot \mathcal{V})(u)) \\
& \geq \bigwedge_{u \in L^{X \times X}}\left(\left(M(\mathcal{U}) \circ_{\odot} M(\mathcal{V})\right)(u) \uparrow(\mathcal{U} \circ \odot \mathcal{V})(u)\right) \\
& \left.\geq \bigwedge_{u \in L^{X \times X}}\left(\bigvee_{u_{1} \circ u_{2} \leq u}\left(M(\mathcal{U})\left(u_{1}\right) \odot M(\mathcal{V})\left(u_{2}\right)\right) \uparrow(\mathcal{U} \circ \odot \mathcal{V})(u)\right)\right) \\
& =\bigwedge_{u \in L^{X \times X}} \bigwedge_{u_{1} \circ u_{2} \leq u}\left(M(\mathcal{U})\left(u_{1}\right) \odot M(\mathcal{V})\left(u_{2}\right) \uparrow(\mathcal{U} \circ \odot \mathcal{V})(u)\right) \\
& \geq \bigwedge_{u \in L^{X \times X}} \bigwedge_{u_{1} \circ u_{2} \leq u}\left(M(\mathcal{U})\left(u_{1}\right) \odot M(\mathcal{V})\left(u_{2}\right) \uparrow \mathcal{U}\left(u_{1}\right) \odot \mathcal{V}\left(u_{2}\right)\right) \\
& \geq \bigwedge_{u_{1} \in L^{X \times X}} \bigwedge_{u_{2} \in L^{X \times X}}\left(\left(M(\mathcal{U})\left(u_{1}\right) \uparrow \mathcal{U}\left(u_{1}\right)\right) \odot\left(M(\mathcal{V})\left(u_{2}\right) \uparrow \mathcal{V}\left(u_{2}\right)\right)\right) \\
& \geq\left(\bigwedge_{u_{1} \in L^{X \times X}}\left(M(\mathcal{U})\left(u_{1}\right) \uparrow \mathcal{U}\left(u_{1}\right)\right)\right) \odot\left(\bigwedge_{u_{2} \in L^{X \times X}}\left(M(\mathcal{V})\left(u_{2}\right) \uparrow \mathcal{V}\left(u_{2}\right)\right)\right) \\
& =\Lambda^{M \uparrow}(\mathcal{U}) \odot \Lambda^{M \uparrow}(\mathcal{V}) .
\end{aligned}
$$

(2) For each $\mathcal{U} \in F_{*}(X \times X)$, by Lemma 2.5(8),

$$
\begin{aligned}
& \Lambda_{X}^{M \uparrow}(\mathcal{U}) \uparrow \Lambda_{Y}^{M \uparrow}((\psi \times \psi) \Rightarrow(\mathcal{U})) \\
& \geq\left(\bigwedge_{u \in L^{X \times X}}\left(M_{X}(\mathcal{U})(u) \uparrow \mathcal{U}(u)\right)\right) \\
& \uparrow\left(\bigwedge_{v \in L^{Y \times Y}}\left(M_{Y}((\psi \times \psi) \Rightarrow(\mathcal{U}))(v) \uparrow(\psi \times \psi) \Rightarrow(\mathcal{U})(v)\right)\right) \\
& \geq\left(\bigwedge_{v \in L^{Y \times Y}}\left(M_{X}(\mathcal{U})((\psi \times \psi) \leftarrow(v)) \uparrow \mathcal{U}\left((\psi \times \psi)^{\leftarrow}(v)\right)\right)\right) \uparrow \\
& \left(\bigwedge_{v \in L^{Y \times Y}}\left(M_{Y}((\psi \times \psi) \Rightarrow(\mathcal{U}))(v) \uparrow(\psi \times \psi) \Rightarrow(\mathcal{U})(v)\right)\right) \\
& \geq \bigwedge_{v \in L^{Y \times Y}}\left(\left(M_{X}(\mathcal{U})((\psi \times \psi) \leftarrow(v)) \uparrow \mathcal{U}\left((\psi \times \psi)^{\leftarrow}(v)\right)\right) \uparrow\right. \\
& \left.\left(M_{Y}((\psi \times \psi) \Rightarrow(\mathcal{U}))(v) \uparrow \mathcal{U}((\psi \times \psi) \leftarrow(v))\right)\right) \\
& \geq \bigwedge_{v \in L^{Y \times Y}}\left(M_{Y}((\psi \times \psi) \Rightarrow(\mathcal{U}))(v) \uparrow M_{X}(\mathcal{U})\left((\psi \times \psi)^{\leftarrow}(v)\right)\right) .
\end{aligned}
$$

Since $M_{Y}((\psi \times \psi) \Rightarrow(\mathcal{U}))(v) \leq M_{X}(\mathcal{U})\left((\psi \times \psi)^{\leftarrow}(v)\right)$ for each $v \in L^{Y \times Y}, \mathcal{U} \in F_{*}(X \times$ $X)$, by Lemma 2.5(4),

$$
\bigwedge_{v \in L^{Y \times Y}}\left(M_{Y}((\psi \times \psi) \Rightarrow(\mathcal{U}))(v) \Rightarrow M_{X}(\mathcal{U})\left((\psi \times \psi)^{\leftarrow}(v)\right)\right)=\top
$$

Hence $\Lambda_{X}^{M \uparrow}(\mathcal{U}) \Rightarrow \Lambda_{Y}^{M \uparrow}((\psi \times \psi) \Rightarrow(\mathcal{U}))=\top$. Thus $\psi:\left(X, \Lambda_{X}^{M \uparrow}\right) \rightarrow\left(Y, \Lambda_{Y}^{M \uparrow}\right)$ is quasi-uniformly continuous.

Example 3.2. Let $(L=[0,1], \leq, \odot, *, 0,1)$ be an M-ecl-premonoid. Let a map $M_{X}: F_{*}(X \times X) \rightarrow[0,1]^{[0,1]^{X}}$ defined as $M_{X}(\mathcal{U})=\bigwedge_{x \in X}[(x, x)]$.
(1) Let $(L=[0,1], \leq, \wedge, *, 0,1)$ be an M-ecl-premonoid. Since

$$
M_{X}(\mathcal{U})=\bigwedge_{x \in X}[(x, x)] \leq[(x, x)]
$$

$M_{X}(\mathcal{U} \odot \mathcal{V})=\bigwedge_{x \in X}[(x, x)] \leq \bigwedge_{x \in X}[(x, x)] \odot \bigwedge_{x \in X}[(x, x)]=M_{X}(\mathcal{U}) \odot M_{X}(\mathcal{V})$ and

$$
\begin{aligned}
\left(M_{X}(\mathcal{U}) \circ \wedge M_{X}(\mathcal{V})\right)(u) & \geq M_{X}(\mathcal{U})(u) \odot M_{X}(\mathcal{U})\left(1_{\triangle}\right) \\
& =\bigwedge_{x \in X}[(x, x)](u) \odot \bigwedge_{x \in X}[(x, x)]\left(1_{\triangle}\right) \geq \bigwedge_{x \in X}[(x, x)](u)
\end{aligned}
$$

it satisfies the following conditions (M1), (M2) and (M3). For each $\uparrow \in\{\rightarrow, \Rightarrow\}$,

$$
\Lambda^{M_{X} \uparrow}(\mathcal{U})=\bigwedge_{u \in L^{X \times X}}\left(\bigwedge_{x \in X}[(x, x)](u) \uparrow \mathcal{U}(u)\right)=\bigwedge_{u \in L^{X \times X}}\left(\bigwedge_{x \in X} u(x, x) \uparrow \mathcal{U}(u)\right)
$$

Then $\Lambda^{M_{X} \uparrow}$ is an $(L, *, \odot)$-quasi-uniform convergence structure.
Let $\psi:\left(X, M_{X}\right) \rightarrow\left(Y, M_{Y}\right)$ be a map with $M_{Y}(\mathcal{V})=\bigwedge_{y \in Y}[(y, y)]$ for all $\mathcal{V} \in$ $F(Y \times Y)$. Since $M_{Y}((\psi \times \psi) \Rightarrow(\mathcal{U}))(v)=\bigwedge_{y \in Y} v(y, y) \leq \bigwedge_{x \in X} v(\psi(x), \psi(x))=$ $M_{X}(\mathcal{U})\left((\psi \times \psi)^{\leftarrow}(v)\right)$ for each $v \in L^{Y \times Y}$, then $\psi:\left(X, \Lambda^{M_{X} \uparrow}\right) \rightarrow\left(Y, \Lambda^{M_{Y} \uparrow}\right)$ is uniformly continuous.

Example 3.3. Let $X=\{a, b, c\}$ be a set and $(L=[0,1], \leq, \wedge, *, 0,1)$ an M-eclpremonoid with $a * b=(a+b-1) \vee 0$. Put $u \in[0,1]^{X \times X}$ as follows:

$$
\begin{gathered}
u(a, a)=u(b, b)=1, u(c, c)=0.4, \quad u(a, b)=u(b, a)=0.6 \\
u(a, c)=u(c, a)=0.5, u(b, c)=u(c, b)=0.4
\end{gathered}
$$

Define $[0,1]$-filter as $\mathcal{U}:[0,1]^{X \times X} \rightarrow[0,1]$ as follows:

$$
\mathcal{U}(w)= \begin{cases}1, & \text { if } w \geq 1 \triangle \\ 0.2, & \text { if } u \leq w \ngtr 1_{\triangle}, \\ 0, & \text { otherwise. }\end{cases}
$$

Since $v \circ 1_{\triangle}=v$, we obtain $\mathcal{U} \circ \wedge \mathcal{U}=\mathcal{U}=\mathcal{U}^{-1}$ and $0.2=\mathcal{U}(u) \leq[(c, c)](u)=0.4$. Put $M_{X}(\mathcal{W})=\mathcal{U}$ for all $\mathcal{W} \in F_{*}(X \times X)$. Then M_{X} satisfies the conditions (M1)(M4). For each $\uparrow \in\{\rightarrow, \Rightarrow\}$, we obtain an $(L, *, \wedge)$ uniform convergence structure
$\Lambda^{M_{X} \uparrow}: F_{*}(X \times X) \rightarrow[0,1]$ as follows:

$$
\begin{aligned}
\Lambda^{M_{X} \uparrow}(\mathcal{W}) & =\bigwedge_{v \in L^{X \times X}}\left(M_{X}(\mathcal{W})(v) \uparrow \mathcal{W}(v)\right)=\bigwedge_{v \in L^{X \times X}}(\mathcal{V}(v) \uparrow \mathcal{W}(v)) \\
\Lambda^{M_{X} \uparrow}\left(\mathcal{W}^{-1}\right) & =\bigwedge_{v \in L^{X \times X}}\left(M_{X}\left(\mathcal{W}^{-1}\right)(v) \uparrow \mathcal{W}^{-1}(v)\right) \\
& =\bigwedge_{v \in L^{X \times X}}\left(\mathcal{V}(v) \uparrow \mathcal{W}^{-1}(v)\right)=\bigwedge_{v \in L^{X \times X}}\left(\mathcal{V}^{-1}(v) \uparrow \mathcal{W}\left(v^{-1}\right)\right) \\
& =\bigwedge_{v \in L^{X \times X}}\left(\mathcal{V}\left(v^{-1}\right) \uparrow \mathcal{W}\left(v^{-1}\right)\right)=\Lambda^{M_{X} \uparrow}(\mathcal{W})
\end{aligned}
$$

where $a \Rightarrow b=(1-a+b) \wedge 1$ and

$$
a \rightarrow b= \begin{cases}1, & \text { if } a \leq b \\ b, & \text { if } a \not \leq b\end{cases}
$$

Example 3.4. Let $X=\{a, b, c\}$ be a set, $(L=[0,1], \leq, \odot, *, 0,1)$ an ecl-premonoid with $a * b=a \cdot b, a \odot b=a^{\frac{1}{3}} \cdot b^{\frac{1}{3}}$ and $u \in[0,1]^{X \times X}$ defined as follows:

$$
\begin{gathered}
u(a, a)=u(b, b)=u(c, c)=1, u(a, b)=0.5, u(b, a)=0.6 \\
u(a, c)=u(c, a)=0.5, u(b, c)=0.6, u(c, b)=0.4
\end{gathered}
$$

Define $[0,1]$-filter as $\mathcal{U}:[0,1]^{X \times X} \rightarrow[0,1]$ as follows:

$$
\mathcal{U}(w)= \begin{cases}1, & \text { if } w=1_{X \times X} \\ 0.6^{n}, & \text { if } u^{n} \leq w \nsupseteq u^{n-1}, n \in N, \\ 0, & \text { otherwise }\end{cases}
$$

where $u^{n+1}=u^{n} * u$ and $u^{0}=1_{X \times X}$.
Since $u^{n} \circ u^{n}=u^{n}$, we obtain

$$
\begin{aligned}
& (\mathcal{U} \circ \odot \mathcal{U})(w)= \begin{cases}1, & \text { if } w=1_{X \times X}, \\
0.6^{n} \odot 0.6^{n}, & \text { if } u^{n} \leq w \nsupseteq u^{n-1}, n \in N, \\
0, & \text { otherwise. }\end{cases} \\
& (\mathcal{U} \odot \mathcal{U})(w)= \begin{cases}1, & \text { if } w=1_{X \times X}, \\
0.6^{n} \odot 0.6^{n}, & \text { if } u^{n} \leq w \nsupseteq u^{n-1}, n \in N, \\
0, & \text { otherwise. }\end{cases}
\end{aligned}
$$

Put $M_{X}(\mathcal{W})=\mathcal{U}$ for all $\mathcal{W} \in F_{*}(X \times X)$.
(1) Let $(L=[0,1], \leq, \wedge, *, 0,1)$ be an M-ecl-premonoid with $a * b=a \cdot b$ with

$$
a \Rightarrow b=\left\{\begin{array}{ll}
1, & \text { if } a \leq b, \\
\frac{b}{a}, & \text { if } a \not \leq b,
\end{array} \quad a \rightarrow b= \begin{cases}1, & \text { if } a \leq b, \\
b, & \text { if } a \not \leq b .\end{cases}\right.
$$

Since $\mathcal{U} \circ \wedge \mathcal{U}=\mathcal{U} \wedge \mathcal{U}=\mathcal{U}, M$ satisfies the conditions (M1)-(M4). For each $\uparrow \in\{\rightarrow, \Rightarrow$ $\}$, we obtain an $(L, *, \wedge)$ quasi-uniform convergence structures $\Lambda^{M_{X} \uparrow}: F_{*}(X \times X) \rightarrow$ $[0,1]$ as follows:

$$
\begin{aligned}
\Lambda^{M_{X} \uparrow}(\mathcal{W}) & =\bigwedge_{v \in L^{X \times X}}\left(M_{X}(\mathcal{W})(v) \uparrow \mathcal{W}(v)\right) \\
& =\bigwedge_{v \in L^{X \times X}}(\mathcal{U}(v) \uparrow \mathcal{W}(v)) \\
& =\bigwedge_{n \in N}\left(0.6^{n} \uparrow \mathcal{W}\left(u^{n}\right)\right) .
\end{aligned}
$$

So, we have

$$
\begin{aligned}
& \Lambda^{M_{X} \Rightarrow}(\mathcal{W})= \begin{cases}1, & \text { if } 0.6^{n} \leq \mathcal{W}\left(u^{n}\right), \forall n \in N \\
\frac{\mathcal{W}\left(u^{n}\right)}{0.6^{n}}, & \text { if } 0.6^{n} \leq \mathcal{W}\left(u^{n}\right),\end{cases} \\
& \Lambda^{M_{X} \rightarrow}(\mathcal{W})= \begin{cases}1, & \text { if } 0.6^{n} \leq \mathcal{W}\left(u^{n}\right), \forall n \in N \\
\mathcal{W}\left(u^{n}\right), & \text { if } 0.6^{n} \not \leq \mathcal{W}\left(u^{n}\right) .\end{cases}
\end{aligned}
$$

Since $1=\Lambda^{M_{X} \rightarrow}(\mathcal{U})=0.6 \rightarrow \mathcal{U}(u) \not \leq \Lambda^{M_{X} \rightarrow}\left(\mathcal{U}^{-1}\right)=0.6 \rightarrow \mathcal{U}\left(u^{-1}\right)=0.6 \rightarrow$ $0.36=0.36, \Lambda^{M_{X} \rightarrow}$ is not an $(L, *, \wedge)$ uniform convergence structure on X. Since $1=\Lambda^{M_{X} \Rightarrow}(\mathcal{U})=0.6 \Rightarrow \mathcal{U}(u) \not \leq \Lambda^{M_{X} \Rightarrow}\left(\mathcal{U}^{-1}\right)=\left(0.6 \Rightarrow \mathcal{U}\left(u^{-1}\right)\right)=\frac{1}{6}, \Lambda^{M_{X} \Rightarrow}$ is not an $(L, *, \wedge)$ uniform convergence structure on X.

Let $\psi:\left(X, M_{X}^{x}\right) \rightarrow\left(Y, M_{Y}^{\psi(x)}\right)$ be a map with $M_{Y}(\mathcal{V})=(\psi \times \psi) \Rightarrow(\mathcal{U})$ for all $\mathcal{V} \in F_{*}(Y \times Y)$. Then $M_{Y}((\psi \times \psi) \Rightarrow(\mathcal{U}))(v)=(\psi \times \psi) \Rightarrow(\mathcal{U})(v)=\mathcal{U}\left((\psi \times \psi)^{\leftarrow}(v)\right)=$ $M_{X}(\mathcal{U})\left((\psi \times \psi)^{\leftarrow}(v)\right)$ for each $\mathcal{U} \in F_{*}(X \times X)$. Thus $\psi:\left(X, \Lambda^{M_{X} \uparrow}\right) \rightarrow\left(Y, \Lambda^{M_{X} \uparrow}\right)$ is uniformly continuous.
(2) Let $(L=[0,1], \leq, \odot, *, 0,1)$ be an M-ecl-premonoid with $a * b=a \cdot b, a \odot b=$ $a^{\frac{1}{3}} \cdot b^{\frac{1}{3}}$ with

$$
a \Rightarrow b=\left\{\begin{array}{ll}
1, & \text { if } a \leq b, \\
\frac{b}{a}, & \text { if } a \not \leq b,
\end{array} \quad a \rightarrow b= \begin{cases}1, & \text { if } a \leq b, \\
\left(\frac{b}{a^{3}}\right)^{\frac{1}{3}}, & \text { if } a \not \leq b .\end{cases}\right.
$$

We obtain an $(L, *, \odot)$ quasi-uniform convergence structures $\Lambda^{M_{X} \Rightarrow}, \Lambda^{M_{X} \rightarrow}: F_{*}(X \times$ $X) \rightarrow[0,1]$ as follows:

$$
\begin{gathered}
\Lambda^{M_{X} \Rightarrow}(\mathcal{W})= \begin{cases}1, & \text { if } 0.6^{n} \leq \mathcal{W}\left(u^{n}\right), \forall n \in N \\
\frac{\mathcal{W}\left(u^{n}\right)}{0.6^{n}}, & \text { if } 0.6^{n} \not \leq \mathcal{W}\left(u^{n}\right),\end{cases} \\
\Lambda^{M_{X} \rightarrow}(\mathcal{W})= \begin{cases}1, & \text { if } 0.6^{n} \leq \mathcal{W}\left(u^{n}\right), \forall n \in N \\
\left(\frac{\mathcal{W}\left(u^{n}\right)}{0.6^{3 n}}\right)^{\frac{1}{3}}, & \text { if } 0.6^{n} \not \leq \mathcal{W}\left(u^{n}\right) .\end{cases}
\end{gathered}
$$

Theorem 3.5. Let Λ_{1} and Λ_{2} be $(L, *, \odot)$-quasi-uniform convergence spaces on X. We define a map $\Lambda_{1} \odot_{*} \Lambda_{2}: F_{*}(X \times X) \rightarrow L$ as follows:

$$
\left(\Lambda_{1} \odot_{*} \Lambda_{2}\right)(\mathcal{U})=\bigvee\left\{\Lambda_{1}\left(\mathcal{U}_{1}\right) \odot \Lambda_{2}\left(\mathcal{U}_{2}\right) \mid \mathcal{U}_{1} * \mathcal{U}_{2} \leq \mathcal{U}\right\}
$$

Then $\Lambda_{1} \odot_{*} \Lambda_{2}$ is an $(L, *, \odot)$-quasi-uniform convergence space on X which is coarser than Λ_{1} and Λ_{2}. Moreover, $\Lambda_{1} *_{*} \Lambda_{2}$ is the finest $(L, *, *)$-quasi-uniform convergence spaces on X which is coarser than Λ_{1} and Λ_{2}.

Proof. (QUC1) Since $[(x, x)] *[(x, x)] \leq[(x, x)]$,

$$
\left(\Lambda_{1} \odot_{*} \Lambda_{2}\right)([(x, x)]) \geq \Lambda_{1}([(x, x)]) \odot \Lambda_{1}([(x, x)])=\top
$$

Since $\left(\mathcal{U}_{1} \odot \mathcal{V}_{1}\right) *\left(\mathcal{U}_{2} \odot \mathcal{V}_{2}\right) \leq\left(\mathcal{U}_{1} * \mathcal{U}_{2}\right) \odot\left(\mathcal{V}_{1} * \mathcal{V}_{2}\right)$,

$$
\begin{aligned}
& \left(\Lambda_{1} \odot * \Lambda_{2}\right)(\mathcal{U}) \odot\left(\Lambda_{1} \odot * \Lambda_{2}\right)(\mathcal{V}) \\
& =\bigvee\left\{\Lambda_{1}\left(\mathcal{U}_{1}\right) \odot \Lambda_{2}\left(\mathcal{U}_{2}\right) \mid \mathcal{U}_{1} * \mathcal{U}_{2} \leq \mathcal{U}\right\} \odot \bigvee\left\{\Lambda_{1}\left(\mathcal{V}_{1}\right) \odot \Lambda_{2}\left(\mathcal{V}_{2}\right) \mid \mathcal{V}_{1} * \mathcal{V}_{2} \leq \mathcal{V}\right\} \\
& =\bigvee\left\{\Lambda_{1}\left(\mathcal{U}_{1}\right) \odot \Lambda_{2}\left(\mathcal{U}_{2}\right) \odot \Lambda_{1}\left(\mathcal{V}_{1}\right) \odot \Lambda_{2}\left(\mathcal{V}_{2}\right) \mid \mathcal{U}_{1} * \mathcal{U}_{2} \leq \mathcal{U}_{1} * \mathcal{V}_{2} \leq \mathcal{V}\right\} \\
& \leq \bigvee\left\{\Lambda_{1}\left(\mathcal{U}_{1}\right) \odot \Lambda_{2}\left(\mathcal{U}_{2}\right) \odot \Lambda_{1}\left(\mathcal{V}_{1}\right) \odot \Lambda_{2}\left(\mathcal{V}_{2}\right) \mid \mathcal{U}_{1} * \mathcal{U}_{2} \leq{\left.\mathcal{U}, \mathcal{V}_{1} * \mathcal{V}_{2} \leq \mathcal{V}\right\}}_{\leq \bigvee\left\{\Lambda_{1}\left(\mathcal{U}_{1} \odot \mathcal{V}_{1} \odot \Lambda_{2}\left(\mathcal{U}_{2} \odot \mathcal{V}_{2}\right) \mid\left(\mathcal{U}_{1} \odot \mathcal{V}_{1}\right) *\left(\mathcal{U}_{2} \odot \mathcal{V}_{2}\right) \leq \mathcal{U} \odot \mathcal{V}\right\}\right.}^{\leq\left(\Lambda_{1} \odot * \Lambda_{2}\right)(\mathcal{U} \odot \mathcal{V}) .}\right.
\end{aligned}
$$

Since $\left(\mathcal{U}_{1} \circ \odot \mathcal{V}_{1}\right) *\left(\mathcal{U}_{2} \circ \odot \mathcal{V}_{2}\right) \leq\left(\mathcal{U}_{1} * \mathcal{U}_{2}\right) \circ \odot\left(\mathcal{V}_{1} * \mathcal{V}_{2}\right)$,

$$
\begin{aligned}
& \left(\Lambda_{1} \odot_{*} \Lambda_{2}\right)(\mathcal{U}) \odot\left(\Lambda_{1} \odot_{*} \Lambda_{2}\right)(\mathcal{V}) \\
& =\bigvee\left\{\Lambda_{1}\left(\mathcal{U}_{1}\right) \odot \Lambda_{2}\left(\mathcal{U}_{2}\right) \mid \mathcal{U}_{1} * \mathcal{U}_{2} \leq \mathcal{U}\right\} \odot \bigvee\left\{\Lambda_{1}\left(\mathcal{V}_{1}\right) \odot \Lambda_{2}\left(\mathcal{V}_{2}\right) \mid \mathcal{V}_{1} * \mathcal{V}_{2} \leq \mathcal{V}\right\} \\
& =\bigvee\left\{\Lambda_{1}\left(\mathcal{U}_{1}\right) \odot \Lambda_{2}\left(\mathcal{U}_{2}\right) \odot \Lambda_{1}\left(\mathcal{V}_{1}\right) \odot \Lambda_{2}\left(\mathcal{V}_{2}\right) \mid \mathcal{U}_{1} * \mathcal{U}_{2} \leq \mathcal{U}_{1} \mathcal{V}_{1} * \mathcal{V}_{2} \leq \mathcal{V}\right\} \\
& \leq \bigvee\left\{\Lambda_{1}\left(\mathcal{U}_{1}\right) \odot \Lambda_{2}\left(\mathcal{U}_{2}\right) \odot \Lambda_{1}\left(\mathcal{V}_{1}\right) \odot \Lambda_{2}\left(\mathcal{V}_{2}\right) \mid \mathcal{U}_{1} * \mathcal{U}_{2} \leq \mathcal{U}, \mathcal{V}_{1} * \mathcal{V}_{2} \leq \mathcal{V}\right\} \\
& \leq \bigvee\left\{\Lambda_{1}\left(\mathcal{U}_{1} \odot \odot \mathcal{V}_{1}\right) \odot \Lambda_{2}\left(\mathcal{U}_{2} \circ \odot \mathcal{V}_{2}\right) \mid\left(\mathcal{U}_{1} \odot \odot \mathcal{V}_{1}\right) *\left(\mathcal{U}_{2} \odot \odot \mathcal{V}_{2}\right) \leq \mathcal{U} \circ \odot \mathcal{V}\right\} \\
& \leq\left(\Lambda_{1} \odot_{*} \Lambda_{2}\right)(\mathcal{U} \circ \odot \mathcal{V}) .
\end{aligned}
$$

Since $\mathcal{U} *[(x, x)] \leq \mathcal{U}$, then $\left(\Lambda_{1} \odot_{*} \Lambda_{2}\right)(\mathcal{U}) \geq \Lambda_{1}(\mathcal{U}) \odot \Lambda_{2}([(x, x)])=\Lambda_{1}(\mathcal{U})$. Similarly, $\Lambda_{1} \odot_{*} \Lambda_{2} \geq \Lambda_{2}$.

If $\odot=*$ and $\Lambda_{i} \leq \Lambda$ for $i \in\{1,2\}$, we have $\Lambda_{1} *_{*} \Lambda_{2} \leq \Lambda$ from:

$$
\begin{aligned}
\left(\Lambda_{1} *_{*} \Lambda_{2}\right)(\mathcal{U}) & =\bigvee\left\{\Lambda_{1}\left(\mathcal{U}_{1}\right) * \Lambda_{2}\left(\mathcal{U}_{2}\right) \mid \mathcal{U}_{1} * \mathcal{U}_{2} \leq \mathcal{U}\right\} \\
& \leq \bigvee\left\{\Lambda\left(\mathcal{U}_{1}\right) * \Lambda\left(\mathcal{U}_{2}\right) \mid \mathcal{U}_{1} * \mathcal{U}_{2} \leq \mathcal{U}\right\} \leq \Lambda(\mathcal{U}) .
\end{aligned}
$$

References

1. R. Bělohlávek: Fuzzy Relational Systems. Kluwer Academic Publishers, New York, 2002.
2. W. Gähler: The general fuzzy filter approach to fuzzy topology I. Fuzzy Sets and Systems 76 (1995), 205-224.
3. \qquad : The general fuzzy filter approach to fuzzy topology II. Fuzzy Sets and Systems 76 (1995), 225-246.
4. U. Höhle \& A.P. Sostak: Axiomatic foundation of fixed-basis fuzzy topology, Chapter 3 in Mathematics of Fuzzy Sets, Logic, Topology and Measure Theory, Handbook of fuzzy set series. Kluwer Academic Publisher, Dordrecht, 1999.
5. G. Jäger: Subcategories of lattice-valued convergence spaces. Fuzzy Sets and Systems 156 (2005), 1-24.
6. \qquad : Pretopological and topological lattice-valued convergence spaces. Fuzzy Sets and Systems 158 (2007), 424-435.
7. Jinming Fang: Stratified L-order convergence structures. Fuzzy Sets and Systems 161 (2010), 2130-2149.
8. \qquad : Relationships between L-ordered convergence structures and strong L-tologies. Fuzzy Sets and Systems 161 (2010), 2923-2944.
9. \qquad : Lattice-valued semiuniform convergence spaces. Fuzzy Sets and Systems 195 (2012), 33-57.
10. \qquad : Stratified L-order quasiuniform limit spaces. Fuzzy Sets and Systems 227 (2013), 51-73.
11. \qquad : Lattice-valued preuniform convergence spaces. Fuzzy Sets and Systems (2014), 52-70.
12. Y.C. Kim \& J.M. Ko: Images and preimages of L-filter bases. Fuzzy Sets and Systems 173 (2005), 93-113.
13. \qquad : $(L, *, \odot)$-quasiuniform convergence spaces. Submit to International Journal of Pure and Applied Mathematics.
14. D. Orpen \& G. Jäger: Lattice-valued convergence spaces. Fuzzy Sets and Systems 190 (2012), 1-20.
15. W. Yao: On many-valued L-fuzzy convergence spaces. Fuzzy Sets and Systems 159 (2008), 2503-2519.
${ }^{\text {a }}$ Department of Mathematics, Gangneung-Wonju National Gangneung 25457, Korea Email address: jmko@gwnu.ac.kr
${ }^{\text {b }}$ Department of Mathematics, Gangneung-Wonju National Gangneung 25457, Korea
Email address: yck@gwnu.ac.kr

[^0]: Received by the editors February 05, 2018. Accepted March 22, 2019.
 2010 Mathematics Subject Classification. 03E72, 54A40, 54B10.
 Key words and phrases. GL-monoid, cl-premonoid, ecl-premonoid, $(L, *)$-filters, $(L, *, \odot)$ quasiuniform convergence spaces.
 This work was supported by the Research Institute of Natural Science of Gangneung-Wonju National University.
 *Corresponding author.

