Fig. 1. A Method of Construction of Neural Network for Real Time Monitoring of Spot Welding.
Fig. 2. Comparisons of Regression Line and Test Variables.
Fig. 3. 10 Inputs Neural Network Structure
Fig. 4. Learning Performance of 10 input Neural Network
Fig. 5. 3 Inputs Neural Network Structure
Fig. 6. Moving Variables of Network Train.
Table 1. The Result of Multi-Regression Anlalysis for Stress of Spot Welding.
Table 2. The Result of Multi-Regression Anlalysis for Nugget Diameter of Spot Welding.
Table 3. The Comparison Results of Forecasting Welding Qualities.
References
- T. T. Han, K. Y. Lee & J. S. Kim. (2009). Recent Developments and Weldability of Advanced High Strength Steels for Automotive Applications, Journal of KWJS, 27(2), 131-132.
- K. W. Kang. (2014). Vibration Fatigue Analysis of Spot Welded Component considering Change of Stiffness due to Fatigue Damage, Convergence Society for SMB. (5)1. 1-8
- C. S. Son & Y. W. Park. (2012). Lobe Curve Characteristic Analysis of Resistance Spot Welding for Sheet Combination of 783 MPa Steel Sheet Using Simulation, Journal of KWJS, 30(6). 68-73.
- B. N. Cho, H. S. Kim & I. S. Kang. (2015). Development of Estimation Model of Construction Activity Duration Using Neural Network Theory, Journal of the Korea Academia-Industrial, 16(5). 3477-3483. https://doi.org/10.5762/KAIS.2015.16.5.3477
- K. K. Seo. (2014). Development of a Sales Prediction Model of Electronic Appliances using Artificial Neural Networks, JJournal of Digital Convergence 12(11), 209-214. https://doi.org/10.14400/JDC.2014.12.11.209
- S. K Kang & S. H. Chun, (2017). Human Tracking Technology using Convolutional Neural Network in Visual Surveillance, Journal of Digital Convergence, 15(2), 173-181. https://doi.org/10.14400/JDC.2017.15.2.173
- E. M. Yang, H. J. Lee & C. H. Seo. (2017). Comparison of Detection Performance of Intrusion Detection System Using Fuzzy and Artificial Neural Network, Journal of Digital Convergence, 15(6), 391-398. https://doi.org/10.14400/JDC.2017.15.6.391
- K. T. Kim, J. Y. Choi. (2018). Facial Local Region Based Deep Convolutioal Neural networks for Atomated Face Recognition, Journal of Korea Convergence Society, 9(4). 47-55. https://doi.org/10.15207/JKCS.2018.9.4.047
- T. S. Ki & S. H. Lee. (2017). A Prediction Scheme for Power Apparatus using Artificial Neural Networks, Journal of Korea Convergence Society, 7(6). 201-207
- Y. S. Yang, T. T. Nguyen & K. Y. Bae. (2010). Prediction of Heating Line for Plate Forming in Induction Heating Process Using Artificial Neural Network, Journal of the KWJS, 28(4). 1-4.
- Y. S. Yang, T. T. Nguyen & J. W. Kim. (2013). An artificial neural network system for predicting the deformation of steel plate in triangle induction heating process, International Journal of Precision Engineering and Manufacturing, 14(4), DOI: 10.1007/s12541-013-0075-1
- C. H. Kim, H. Y. Yu & S. H. Hong. (2007). Adaption of Neural Network Algorithm for Pattern Recognition of Weld Flaws, The Journal of the Korea Contents Association, 7(1). 65-72. https://doi.org/10.5392/JKCA.2007.7.1.065
- J. H. Cho. (2013). Prediction of Arc Welding Quality through Artificial Neural Network, Journal of KWJS, 31(3), 44-48.
- Y. B. Cho, H. S. Chang & H. S. Cho. (1993). Estimation of Nugget Size in Resistance Spot Welding Processes Using Artificial Neural Networks, Journal of Mechanical Science and Technology, 17(2), 393-406.
- S. W. Shin, J. H. Lee & S. H. Park. (2018). Strength Estimation Model of Resistance Spot Welding of 1.2 GPa Grade Ultra High Strength TRIP Steel for Car Body Applications, Journal of Welding and Joining, 36(1). 82-89. https://doi.org/10.5781/JWJ.2018.36.1.10