DOI QR코드

DOI QR Code

Convergence study on the change of cognitive function through the intentional finger movement

의식적 손가락 움직임이 인지기능 변화에 미치는 융합연구

  • Kim, Kyung-Yoon (Dept. of Physical Therapy, College of Health and Welfare, Dongshin University) ;
  • Bae, Seahyun (Dept. of Physical Therapy, College of Health and Welfare, Dongshin University)
  • Received : 2019.03.28
  • Accepted : 2019.05.20
  • Published : 2019.05.28

Abstract

This study was to investigate the effect of eye movement and intentional finger movement on cognitive ability. Normal adult subjects were randomly divided into two groups: saccadic eye movement(SEM) and intentional finger movement(IFM). After 2 weeks of intervention, Digit span was used for short-term memory test and N-back was used for working memory test. As a result, the short-term memory of the IFM group increased significantly over time, and the follow-up test showed difference between group. The IFM group's the execution time, the error count and the accuracy rate of n-back item showed significant effects over time. The SEM group's the execution time and the accuracy of n-back item showed significant effects over time. In conclusion, the IFM method, which is a multiple stimulus that can activate the cerebral cortex more extensively than the single stimulus SEM, may be more useful as an intervention method of cognitive function improvement.

본 연구는 정상 성인을 무작위로 급속안구움직임(saccadic eye movement, SEM)군과 의식적손가락움직임(intentional finger movement, IFM) 군으로 구분하여 2주 동안 중재를 실시한 후 숫자외우기 검사와 n-back 검사를 사용하여 인지기능의 변화를 알아보았다. 그 결과 IFM군의 단기기억은 시간이 지날수록 유의하게 상승하였으며, 추적 검사에서는 군간 차이를 나타내었다. IFM군의 n-back은 수행시간, 오류횟수, 정확률에서 시간이 지날수록 유의한 효과를 나타내었다. SEM군의 n-back은 수행시간과 정확률에서 시간이 지날수록 유의한 효과를 나타내었다. 결론적으로 인지기능 향상에는 단일 자극인 SEM보다 대뇌겉질을 광범위하게 활성화 시킬 수 있는 다중 자극인 IFM 방법이 인지기능 향상의 중재 방법으로 더 유용할 것으로 생각된다.

Keywords

OHHGBW_2019_v10n5_95_f0002.png 이미지

Fig. 1. Saccadic eye movement

OHHGBW_2019_v10n5_95_f0003.png 이미지

Fig. 2. Intentional finger movement

OHHGBW_2019_v10n5_95_f0004.png 이미지

Fig. 3. The n-back working memory task.

Table 1. The general characteristics of subjects

OHHGBW_2019_v10n5_95_t0001.png 이미지

Table 2. The change of Digit span on short-term memory

OHHGBW_2019_v10n5_95_t0002.png 이미지

Table 3. The change of 1-back on working memory

OHHGBW_2019_v10n5_95_t0003.png 이미지

Table 4. The change of 2-back on working memory

OHHGBW_2019_v10n5_95_t0004.png 이미지

Table 5. The change of 3-back on working memory

OHHGBW_2019_v10n5_95_t0005.png 이미지

References

  1. National Health Insurance Service. (2013). Fight with my memory. Ministry of Health and Welfare. http://www.mohw.go.kr/react/al/sal0301vw.jsp?PAR_MENU_ID=04&MENU_ID=0403&CONT_SEQ=285582&page=1
  2. Ministry of Health and Welfare. (2018). Korean Dementia Observatory. Seongnam: National Institute of Dementia.
  3. I. McDowell. (2001). Alzheimer's disease: insights from epidemiology. Aging (Milano), 13(3), 143-162.
  4. H. J. Lee, J. W. Lee & J. Y. Lee. (2015). Family caregiver's burden for the elderly with dementia : moderating effects of social support. Journal of Institute for Social Sciences, 26(1), 345-367. DOI : 10.16881/jss.2015.01.26.1.345
  5. Baddeley, A., & Hitch, G. (1974). Working memory. In G. A. Bower (Ed.), Recent advances in learning and motivation, 8, (pp. 47-90). New York: Academic Press.
  6. P. Muller et al. (2017). Evolution of neuroplasticity in response to physical activity in old age: the case for dancing. Front Aging Neurosci, 9(56). DOI : 10.3389/fnagi.2017.00056
  7. K. R. Crafton, A. N. Mark & S. C. Cramer. (2003). Improved understanding of cortical injury by incorporating measures of functional anatomy. Brain, 126(7), 1650-1659. DOI : 10.1093/brain/awg159
  8. L. H. Eggermont, D. L. Knol, E. M. Hol, D. F. Swaab & E. J. Scherder. (2009). Hand motor activity, cognition, mood, and the rest-activity rhythm in dementia: a clustered RCT. Behavioural brain research, 196(2), 271-278. DOI : 10.1016/j.bbr.2008.09.012
  9. M. R. MacAskill & T. J. Anderson. (2016). Eye movements in neurodegenerative diseases. Current opinion in neurology, 29(1), 61-68. DOI : 10.1097/WCO.0000000000000274
  10. N. Noiret, B. Vigneron, M. Diogo, P. Vandel & E. Laurent. (2017). Saccadic eye movements: what do they tell us about aging cognition?. Neuropsychology, development, and cognition. Section B, Aging, neuropsychology and cognition, 24(5), 575-599. DOI : 10.1080/13825585.2016.1237613
  11. S. P. Liversedge & J. M. Findlay. (2000). Saccadic eye movements and cognition. Trends in cognitive sciences, 4(1), 6-14. https://doi.org/10.1016/S1364-6613(99)01418-7
  12. S. Stuart, B. Galna, S. Lord & L. Rochester. (2016). A protocol to examine vision and gait in Parkinson's disease: impact of cognition and response to visual cues. F1000Research, 4, 1379. DOI : 10.12688/f1000research.7320.2
  13. Alzheimer's Association, UK (2005). "Younger people with dementia" - Alzheimer's Society -dementia care and research.
  14. T. A. Rosness, M. L. Barca & K. Engedal. (2010). Occurrence of depression and its correlates in early onset dementia patients. International journal of geriatric psychiatry, 25(7), 704-711. DOI : 10.1002/gps.2411
  15. A. Arai, T. Matsumoto, M. Ikeda & Y. Arai. (2007). Do family caregivers perceive more difficulty when they look after patients with early onset dementia compared to those with late onset dementia?. International journal of geriatric psychiatry, 22(12), 1255-1261. DOI : 10.1002/gps.1935
  16. N. Noiret et al. (2018). Saccadic Eye Movements and Attentional Control in Alzheimer's Disease. Archives of clinical neuropsychology, 33(1), 1-13. DOI : 10.1093/arclin/acx044
  17. M. Buschkuehl, M. Jaeggi & S. M. Jonides J. (2012). Neuronal effects following working memory training. Developmental cognitive neuroscience, 2(1), 167-179. DOI : 10.1016/j.dcn.2011.10.001
  18. R. W. Engle, S. W. Tuholski, J. E. Laughlin & A. R. A. Conway. (1999). Working memory, short-term memory, and general fluid intelligence: a latent-variable approach. Journal of experimental psychology. General, 128(3), 309-331. DOI : 10.1037/0096-3445.128.3.309
  19. G. A. MILLER. (1956). The magical number seven plus or minus two: some limits on our capacity for processing information. Psychological review, 63(2), 81-97. https://doi.org/10.1037/h0043158
  20. A. Baddeley. (2000). The episodic buffer: a new component of working memory?. Trends in cognitive sciences, 4(11), 417-423. https://doi.org/10.1016/S1364-6613(00)01538-2
  21. S. E. Gathercole & T. P. Alloway. (2006). Practitioner review: short-term and working memory impairments in neurodevelopmental disorders: diagnosis and remedial support. Journal of child psychology and psychiatry, and allied disciplines, 47(1), 4-15. DOI : 10.1111/j.1469-7610.2005.01446.x
  22. M. A. Just & P. A. Carpenter. (1992). A capacity theory of comprehension: individual differences in working memory. Psychological review, 99(1), 122-149. https://doi.org/10.1037/0033-295X.99.1.122
  23. S. Patuzzo, A. Fiaschi & P. Manganotti. (2003). Modulation of motor cortex excitability in the left hemisphere during action observation: a single- and paired-pulse transcranial magnetic stimulation study of self- and non-self-action observation. Neuropsychologia, 41(9), 1272-1278. https://doi.org/10.1016/S0028-3932(02)00293-2
  24. I. Indovina & J. N. Sanes. (2001). Combined visual attention and finger movement effects on human brain representations. Experimental brain research, 140(3), 265-279. https://doi.org/10.1007/s002210100796
  25. S. Molholm, W. Ritter, D. C. Javitt & J. J. Foxe. (2004). Multisensory visual-auditory object recognition in humans: a high-density electrical mapping study. Cerebral cortex, 14(4), 452-465. https://doi.org/10.1093/cercor/bhh007