DOI QR코드

DOI QR Code

Logic tree approach for probabilistic typhoon wind hazard assessment

  • Choun, Young-Sun (Structural and Seismic Safety Research Team, Korea Atomic Energy Research Institute) ;
  • Kim, Min-Kyu (Structural and Seismic Safety Research Team, Korea Atomic Energy Research Institute)
  • 투고 : 2018.03.21
  • 심사 : 2018.11.12
  • 발행 : 2019.04.25

초록

Global warming and climate change are increasing the intensity of typhoons and hurricanes and thus increasing the risk effects of typhoon and hurricane hazards on nuclear power plants (NPPs). To reflect these changes, a new NPP should be designed to endure design-basis hurricane wind speeds corresponding to an exceedance frequency of $10^{-7}/yr$. However, the short typhoon and hurricane observation records and uncertainties included in the inputs for an estimation cause significant uncertainty in the estimated wind speeds for return periods of longer than 100,000 years. A logic-tree framework is introduced to handle the epistemic uncertainty when estimating wind speeds. Three key parameters of a typhoon wind field model, i.e., the central pressure difference, pressure profile parameter, and radius to maximum wind, are used for constructing logic tree branches. The wind speeds of the simulated typhoons and the probable maximum wind speeds are estimated using Monte Carlo simulations, and wind hazard curves are derived as a function of the annual exceedance probability or return period. A logic tree decreases the epistemic uncertainty included in the wind intensity models and provides reasonably acceptable wind speeds.

키워드

참고문헌

  1. 10 CFR 50 Appendix A, General Design Criteria for Nuclear Power Plants, Office of the Federal Register, National Archives and Records Administration, U.S. Government Printing Office, Washington, D.C., USA.
  2. U.S. Nuclear Regulatory Commission, Evaluation of External Hazards to Nuclear Power Plants in the United States, NUREG/CR-5042, USNRC, Washington, D. C., USA, 1987.
  3. T.R. Knutson, J.L. McBride, J. Chan, K. Emanuel, G. Holland, C. Landsea, I. Held, J.P. Kossin, A.K. Srivastava, M. Sugi, Tropical cyclones and climate change, Nat. Geosci. 3 (2010) 157-163. https://doi.org/10.1038/ngeo779
  4. Electric Power Research Institute, Identification of External Hazards for Analysis in Probabilistic Risk Assessment, Technical Report 3002005287, EPRI, California, USA, 2015.
  5. U.S. Nuclear Regulatory Commission, Design-basis Tornado and Tornado Missiles for Nuclear Power Plants, Regulatory Guide 1.76 Revision 1, USNRC, Washington, D.C., USA, 2007.
  6. U.S. Nuclear Regulatory Commission, Design-basis Hurricane and Hurricane Missiles for Nuclear Power Plants, Regulatory Guide 1.221, USNRC, Washington, D.C., USA, 2011.
  7. P.J. Vickery, D. Wadhera, L.A. Twisdale, F.M. Lavelle, U.S. hurricane wind speed risk and uncertainty, J. Struct. Eng. 135 (2009) 301-320. https://doi.org/10.1061/(ASCE)0733-9445(2009)135:3(301)
  8. G.J. Holland, An analytic model of the wind and pressure profiles in hurricanes, Mon. Weather Rev. 108 (1980) 1212-1218. https://doi.org/10.1175/1520-0493(1980)108<1212:AAMOTW>2.0.CO;2
  9. P.N. Georgiou, Design Wind Speeds in Tropical Cyclone-prone Regions, Ph.D. Thesis, University of Western Ontario, Ontario, Canada, 1985.
  10. S.A. Hsu, A. Babin, Estimating the radius of maximum winds via satellite during Hurricane Lili (2002) over the Gulf of Mexico, Nat. Weather Assoc. Electronic J. Operational Meteor. 6 (2005) 1-6.
  11. C.Q. Kieu, An investigation into the contraction of the hurricane radius of maximum wind, Meteorol. Atmos. Phys. 115 (2012) 47-56. https://doi.org/10.1007/s00703-011-0171-7
  12. P.J. Vickery, P.F. Skerlj, L.A. Twisdale, Simulation of hurricane risk in the U.S. using empirical track model, J. Struct. Eng. 126 (2000) 1222-1237. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:10(1222)
  13. H.E. Willoughby, M.E. Rahn, Parametric representation of the primary hurricane vortex. Part I: observations and evaluation of the Holland (1980) model, Mon. Weather Rev. 132 (2004) 3033-3048. https://doi.org/10.1175/MWR2831.1
  14. H. Kawai, K. Honda, T. Tomita, T. Kakinuma, Characteristic of Typhoons in 2004 and Forecasting and Hindcasting of Their Storm Surges, Technical Note of the Port and Airport Research Institute, No.1103, Japan, 2005.
  15. M. Powell, G. Soukup, S. Cocke, S. Gulati, N. Morisseau-Leroy, S. Hamid, N. Dorst, L. Axe, State of Florida hurricane loss projection model: atmospheric science component, J. Wind Eng. Ind. Aerod. 93 (2005) 651-674. https://doi.org/10.1016/j.jweia.2005.05.008
  16. H.E. Willoughby, R.W.R. Darling, M.E. Rahn, Parametric representation of the primary hurricane vortex. Part II: a new family of sectionally continuous profiles, Mon. Weather Rev. 134 (2006) 1102-1120. https://doi.org/10.1175/MWR3106.1
  17. P.J. Vickery, D. Wadhera, Statistical models of Holland pressure profile parameter and radius to maximum winds of hurricanes from flight-level pressure and H*Wind data, J. Appl. Meteor. Climatol. 47 (2008) 2497-2517. https://doi.org/10.1175/2008JAMC1837.1
  18. Federal Emergency Management Agency, Multi-Hazard Loss Estimation Methodology: Hurricane Model, HAZUS-MH 2.1 Technical Manual, FEMA, Washington, D.C., USA, 2012.
  19. L. Zhao, A.P. Lu, L.D. Zhu, S.Y. Cao, Y.J. Ge, Radial distribution of typhoon pressure fields measured by ground multi-point pressure distribution, in: Proceedings of the 7th International Colloquium on Bluff Body Aerodynamics and Applications (BBAA7), Shanghai, China, September 2-6, 2012.
  20. G.D. Hubbert, G.J. Holland, L.M. Leslie, M.J. Manton, A real-time system for forecasting tropical cyclone storm surges, Weather Forecast. 6 (1991) 86-97. https://doi.org/10.1175/1520-0434(1991)006<0086:ARTSFF>2.0.CO;2
  21. B.A. Harper, G.J. Holland, An updated parametric model of the tropical cyclone, in: Proceedings of the 23rd Conference on Hurricanes and Tropical Meteorology, American Meteorological Society, Texas, USA, 1999. January 10-15.
  22. P.J. Vickery, F.J. Masters, M.D. Powell, D. Wadhera, Hurricane hazard modeling: the past, present, and future, J. Wind Eng. Ind. Aerod. 97 (2009) 392-405. https://doi.org/10.1016/j.jweia.2009.05.005
  23. R.W. Schwerdt, F.P. Ho, R.W. Watkins, Meteorological Criteria for Standard Project Hurricane and Probable Maximum Hurricane Wind Fields, Gulf and East Coasts of the United States, NOAA Technical Report NWS 23, US Department of Commerce, Washington, D.C., USA, 1979.
  24. M.E. Batts, L.R. Russell, E. Simiu, Hurricane wind speeds in the United States, J. Struct. Div. 106 (1980) 2001-2016. https://doi.org/10.1061/JSDEAG.0005541
  25. P.J. Vickery, L.A. Twisdale, Wind-field and filling models for hurricane wind-speed predictions, J. Struct. Eng. 121 (1995) 1700-1709. https://doi.org/10.1061/(ASCE)0733-9445(1995)121:11(1700)
  26. P.J. Vickery, P.F. Skerlj, A.C. Steckley, L.A. Twisdale, Hurricane wind field model for use in hurricane simulations, J. Struct. Eng. 126 (2000) 1203-1221. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:10(1203)
  27. P.J. Vickery, D. Wadhera, M.D. Powell, Y. Chen, A hurricane boundary layer and wind field model for use in engineering applications, J. Appl. Meteor. Climatol. 48 (2009) 381-405. https://doi.org/10.1175/2008JAMC1841.1
  28. P.R. Sparks, Z. Huang, Gust factors and surface-to-gradient wind speed ratios in tropical cyclones, J. Wind Eng. Ind. Aerod. 89 (2001) 1058-1470.
  29. M.D. Powell, P.J. Vickery, T.A. Reinhold, Reduced drag coefficient for high wind speeds in tropical cyclones, Nature 422 (2003) 279-283. https://doi.org/10.1038/nature01481
  30. World Meteorological Organization, Guidelines for Converting between Various Wind Averaging Periods in Tropical Cyclone Conditions, WMO/TD-no. 1555, WMO, Geneva, Switzerland, 2010.
  31. P. Vickery, D. Wadhera, A. Cox, V. Cardone, J. Hanson, B. Blanton, Coastal Storm Surge Analysis: Storm Forcing - Report 3: Intermediate Submission No. 1.3, ERDC/CHL TR-11-1, U.S. Army Engineer Research and Development Center, NC, USA, 2013.
  32. V.J. Cardone, A.T. Cox, J.A. Greenwood, E.F. Thompson, Upgrade of Tropical Cyclone Surface Wind Field Model, U.S. Army Corps of Engineers, Washington D.C., USA, 1994.
  33. T.H. Jagger, J.B. Elsner, Climatology models for extreme hurricane winds near the United States, J. Clim. 19 (2006) 3220-3236. https://doi.org/10.1175/JCLI3913.1
  34. F. Scherbaum, N.M. Kuehn, Logic tree branch weights and probabilities: summing up to one is not enough, Earthq. Spectra 27 (2011) 1237-1251. https://doi.org/10.1193/1.3652744
  35. U.S. Nuclear Regulatory Commission, Recommendations for Probabilistic Seismic Hazard Analysis: Guidance on Uncertainty and Use of Experts, NUREG/CR-6372, USNRC, Washington, D.C., USA, 1997.
  36. J.-U. Klugel, Probabilistic seismic hazard analysis for nuclear power plants - current practice from a European perspective, Nucl. Eng. Technol. 41 (2009) 1243-1254. https://doi.org/10.5516/NET.2009.41.10.1243
  37. J.J. Bommer, Challenges of building logic trees for probabilistic seismic hazard analysis, Earthq. Spectra 28 (2012) 1723-1735. https://doi.org/10.1193/1.4000079
  38. J.W. Kang, Y.S. Kim, S.D. Kwon, Y.S. Choun, Generation of a standard typhoon using for surge simulation consistent with wind in terms of return period, J. Korean Soc. Coast. Ocean Eng. 28 (2016) 53-62 (Korean). https://doi.org/10.9765/KSCOE.2016.28.1.53