DOI QR코드

DOI QR Code

Effects of collimator on imaging performance of Yttrium-90 Bremsstrahlung photons: Monte Carlo simulation

  • Kim, Minho (Radiation Devices Research Team, Korea Institute of Radiological and Medical Sciences) ;
  • Bae, Jae Keon (Radiation Devices Research Team, Korea Institute of Radiological and Medical Sciences) ;
  • Hong, Bong Hwan (Radiation Devices Research Team, Korea Institute of Radiological and Medical Sciences) ;
  • Kim, Kyeong Min (Radiation Devices Research Team, Korea Institute of Radiological and Medical Sciences) ;
  • Lee, Wonho (School of Health and Environmental Science, Korea University)
  • 투고 : 2018.07.24
  • 심사 : 2018.11.12
  • 발행 : 2019.04.25

초록

Yttrium-90 is a useful therapeutic radioisotope for tumor treatment because of its high-energy-emitting beta rays. However, it has been difficult to select appropriate collimators and main energy windows for Y-90 Bremsstrahlung imaging using gamma cameras because of the broad energy spectra of Y-90. We used a Monte Carlo simulation to investigate the effects of collimator selection and energy windows on Y-90 Bremsstrahlung imaging. We considered both MELP and HE collimators. Various phantoms were employed in the simulation to determine the main energy window using primary-to-scatter ratios (PSRs). Imaging performance was evaluated using spatial resolution indices, imaging counts, scatter fractions, and contrast-to-noise ratios. Collimator choice slightly affected energy spectrum shapes and improved PSRs. The HE collimator performed better than the MELP collimator on all imaging performance indices (except for imaging count). We observed minor differences in SR and SF values for the HE collimator among the five simulated energy windows. The combination of an HE collimator and improved-PSR energy window produced the best CNR value. In conclusion, appropriate collimator selection is an important component of Bremsstrahlung Y-90 photon imaging and main energy window determination. We found HE collimators to be more appropriate for improving the imaging performance of Bremsstrahlung Y-90 photons.

키워드

참고문헌

  1. A. Otte, R. Herrmann, A. Heppeler, M. Beche, E. Jermann, P. Powell, H.R. Maecke, J. Muller, Yttrium-90 DOTATOC: first clinical results, Eur. J. Nucl. Med. 26 (1999) 1439-1447. https://doi.org/10.1007/s002590050476
  2. T.E. Witzig, L.I. Gordeon, F. Cabanillas, M.S. Czuczman, C. Emmanouilides, R. Joyce, B.L. Pohlman, N.L. Bartlett, G.A. Wiseman, N. Padre, A.J. Grillo-Lopez, P. Multani, C.A. White, Randomized controlled trial of yttrium-90-labeled ibritumomab tiuxetan radioimmunotherapy versus rituximab immunotherapy for patients with relapsed or refractory low-grade, follicular, or transformed B-cell non-hodgkin's lymphoma, J. Clin. Oncol. 20 (2002) 2453-2463. https://doi.org/10.1200/JCO.2002.11.076
  3. F. Morschhauser, J. Radford, A. Van Hoof, U. Vitolo, P. Soubeyran, H. Tilly, P.C. Huijgens, A. Kolstad, F. d'Amore, M.G. Diaz, M. Petrini, C. Sebban, P.L. Zinzani, M.H.J. van Oers, W. van Putten, A. Bischof-Delaloye, A. Rohatiner, G. Salles, J. Kuhlmann, A. Hagenbeek, Phase III trial of consolidation therapy with yttrium-90-ibritumomab tiuxetan compared with no additional therapy after first remission in advanced follicular lymphoma, J. Clin. Oncol. 26 (2008) 5156-5164. https://doi.org/10.1200/JCO.2008.17.2015
  4. P. Flamen, B. Vanderlinden, P. Delatte, G. Ghanem, L. Ameye, M.V.D. Eynde, A. Hendlisz, Multimodality imaging can predict the metabolic response of unresectable colorectal liver metastases to radioembolization therapy with Yttrium-90 labeled resin microspheres, Phys. Med. Biol. 53 (2008) 6591-6603. https://doi.org/10.1088/0031-9155/53/22/019
  5. L.P. Clarke, S.J. Cullom, R. shaw, C. Reece, B.C. Penney, M.A. King, M. Silbiger, Bremsstrahlung imaging using the gamma camera:factors affecting attenuation, J. Nucl. Med. 33 (1992) 161-166.
  6. D. Minarik, K. Sjogreen Gleisner, O. Linden, K. Wingardh, J. Tennvall, S. Strand, M. Ljungberg, ${90}Y$ bremsstrahlung imaging for absorbed-dose assessment in high dose radioimmunotherapy, J. Nucl. Med. 51 (2010) 1974-1978. https://doi.org/10.2967/jnumed.110.079897
  7. D. Minarik, M. Ljungberg, P. Segars, K. Sjogreen Gleisner, Evaluation of quantitative planar ${90}Y$ bremsstrahlung whole body imaging, Phys. Med. Biol. 54 (2009) 5873-5883. https://doi.org/10.1088/0031-9155/54/19/014
  8. X. Rong, Y. Du, M. Ljungberg, E. Rault, S. Vandenberghe, E.C. Frey, Development and evaluation of an improved quantitative ${90}Y$ bremsstrahlung SPECT method, Med. Phys. 59 (2012) 2346-2357.
  9. S. Shen, G.L. DeNardo, A. Yuan, D.A. DeNardo, S.J. DeNardo, Planar gamma camera imaging and quantitation of yttrium-90 bremsstrahlung, J. Nucl. Med. 35 (1994) 1381-1389.
  10. M. Elschot, M.G.E.G. Lam, M.A.A.J. van den Bosch, M.A. Viergever, H.W.A.M. de Jong, Quantitative Monte Carlo-based ${90}Y$ SPECT reconstruction, J. Nucl. Med. 54 (2013) 1557-1563. https://doi.org/10.2967/jnumed.112.119131
  11. X. Rong, Y. Du, E.C. Frey, A method for energy window optimization for quantitative tasks that includes the effects of model-mismatch on bias: application to Y-90 bremsstrahlung SPECT imaging, Phys. Med. Biol. 57 (2012) 3711-3725. https://doi.org/10.1088/0031-9155/57/12/3711
  12. S. Lee, Y. Lee, Feasibility of gamma camera system with $CdWO_4$ detector for quantitation of yttrium-90 bremsstrahlung imaging:Monte Carlo simulation study, Optic 127 (2016) 11807-11815.
  13. H.R. Roshan, B. Mahmoudian, E. Gharepapagh, A. Azarm, J.P. Islamian, Collimator and energy window optimization for ${90}Y$ bremsstrahlung SPECT imaging: a SIMIND Monte Carlo study, Appl. Radiat. Isot. 108 (2016) 124-128. https://doi.org/10.1016/j.apradiso.2015.12.041
  14. X. Rong, E.C. Frey, A collimator optimization method for quantitative imaging: application to Y-90 bremsstrahlung SPECT, Med. Phys. 40 (2013) 1-9, 082504. https://doi.org/10.1002/j.2473-4209.2013.tb00206.x
  15. S. Jan, G. Santin, D. Strul, S. Staelens, K. Assie, D. Autret, S. Avner, R. Barbier, M. Bardies, P.M. Bloomfield, D. Brasse, V. Breton, P. Bruyndonckx, I. Buvat, A.F. Chatziioannou, Y. Choi, Y.H. Chung, C. Comtat, D. Donnarieix, L. Ferrer, S.J. Glick, C.J. Groiselle, D. Guez, P.-F. Honore, S. Kerhoas-Cavata, A.S. Kirov, V. Kohli, M. Koole, M. Krieguer, D.J. van der Laan, F. Lamare, G. Largeron, C. Lartizien, D. Lazaro, M.C. Maas, L. Maigne, F. Mayet, F. Melot, C. Merheb, E. Pennacchio, J. Perez, U. Pietrzyk, F.R. Rannou, M. Rey, D.R. Schaart, C.R. Schmidtlein, L. Simon, T.Y. Song, J.-M. Vieira, D. Visvikis, R. Van de Walle, E. Wieers, C. Morel, GATE: a simulation toolkit for PET and SPECT, Phys. Med. Biol. 49 (2004) 4543-4561. https://doi.org/10.1088/0031-9155/49/19/007
  16. S.R. Cherry, J.A. Sorenson, M.E. Phelps, The gamma camera performance characteristics. Physics in Nuclear Medicine, Saunders, Philadelphia, 2012, pp. 220-225.
  17. K.F. Eckerman, R.J. Westfall, J.C. Ryman, M. Cristy, Availability of nuclear decay data in electronic form, including beta spectra not previously published, Health Phys. 67 (1994) 338-345. https://doi.org/10.1097/00004032-199410000-00004
  18. S.M. Rhymer, J.A. Parker, M.R. Palmer, Detection of ${90}Y$ extravasation by bremsstrahlung imaging for patients undergoing ${90}Y$-ibritumomab tiuxetan therapy, J. Nucl. Med. Technol. 38 (2010) 195-198. https://doi.org/10.2967/jnmt.110.077354
  19. C. Lee, C. Lee, S.H. Park, J.K. Lee, Development of the two Korean adult tomographic computational phantoms for organ dosimetry, Med. Phys. 33 (2006) 380-390. https://doi.org/10.1118/1.2161405
  20. C. Lee, S. Park, J.K. Lee, Specific absorbed fraction for Korean adult voxel phantom from internal photon source", Radiat, Prot. Dosimetry. 123 (2007) 360-368. https://doi.org/10.1093/rpd/ncl167
  21. S.H. Park, J.K. Lee, C. Lee, Dose conversion coefficients calculated using tomographic phantom, KTMAN-2 for x-ray examination of cardiac catheterisation, Radiat. Protect. Dosim. 128 (2007) 351-358. https://doi.org/10.1093/rpd/ncm399

피인용 문헌

  1. Effect of ME Collimator Characteristic, Energy Window Width, and Reconstruction Algorithm Selection on Imaging Performance of Yttrium-90: Simulation Study vol.53, pp.6, 2019, https://doi.org/10.1007/s13139-019-00619-5