DOI QR코드

DOI QR Code

Comprehensive evaluation method for user interface design in nuclear power plant based on mental workload

  • Received : 2018.06.19
  • Accepted : 2018.10.09
  • Published : 2019.04.25

Abstract

Mental workload (MWL) is a major consideration for the user interface design in nuclear power plants (NPPs). However, each MWL evaluation method has its advantages and limitations, thus the evaluation and control methods based on multi-index methods are needed. In this study, fuzzy comprehensive evaluation (FCE) theory was adopted for assessment of interface designs in NPP based on operators' MWL. An evaluation index system and membership functions were established, and the weights were given using the combination of the variation coefficient and the entropy method. The results showed that multi-index methods such as performance measures (speed of task and error rate), subjective rating (NASA-TLX) and physiological measure (eye response) can be successfully integrated in FCE for user interface design assessment. The FCE method has a correlation coefficient compared with most of the original evaluation indices. Thus, this method might be applied for developing the tool to quickly and accurately assess the different display interfaces when considering the aspect of the operators' MWL.

Keywords

References

  1. J.V. Hugo, D.I. Gertman, A method to select human-system interfaces for nuclear power plants, Nucl. Eng. Technol. 48 (2016) 87-97. https://doi.org/10.1016/j.net.2015.10.004
  2. J. O'hara, J. Higgins, J. Persensky, P. Lewis, J. Bongarra, Human factors engineering program review model, in: Report no.ADA488603, Brookhaven National Lab Upton, NY, 2004.
  3. M. Hatch, E. Ron, A. Bouville, L. Zablotska, G. Howe, The Chernobyl disaster: cancer following the accident at the Chernobyl nuclear power plant, Epidemiol. Rev. 27 (2005) 56-66. https://doi.org/10.1093/epirev/mxi012
  4. L.H. Ikuma, C. Harvey, C.F. Taylor, C. Handal, A guide for assessing control room operator performance using speed and accuracy, perceived workload, situation awareness, and eye tracking, J. Loss Prev. Process. Ind. 32 (2014) 454-465. https://doi.org/10.1016/j.jlp.2014.11.001
  5. A. Anokhin, A. Ivkin, S. Dorokhovich, Application of ecological interface design in nuclear power plant (NPP) operator support system, Nucl. Eng. Technol. 50 (2018) 619-626. https://doi.org/10.1016/j.net.2018.03.005
  6. F. Nachreiner, Standards for ergonomics principles relating to the design of work systems and to mental workload, Appl. Ergon. 26 (1995) 259-263. https://doi.org/10.1016/0003-6870(95)00029-C
  7. N. Moray, Mental workload since 1979, Int. Rev. Ergon 2 (1988) 123-150.
  8. Q. Gao, Y. Wang, F. Song, Z. Li, X. Dong, Mental workload measurement for emergency operating procedures in digital nuclear power plants, Ergonomics 56 (2013) 1070-1085. https://doi.org/10.1080/00140139.2013.790483
  9. Y.-T. Jou, T.-C. Yenn, C.J. Lin, C.-W. Yang, C.-C. Chiang, Evaluation of operators' mental workload of human-system interface automation in the advanced nuclear power plants, Nucl. Eng. Des. 239 (2009) 2537-2542. https://doi.org/10.1016/j.nucengdes.2009.06.023
  10. P.S. Tsang, M.A. Vidulich, Mental Workload and Situation Awareness, Wiley, New York, NY, 2006.
  11. M. Kankal, O. Yuksek, Artificial neural network approach for assessing harbor tranquility: the case of Trabzon Yacht Harbor, Turkey, Appl. Ocean Res. 38 (2012) 23-31. https://doi.org/10.1016/j.apor.2012.05.009
  12. X. Dou, Y. Yang, Comprehensive evaluation of machine learning techniques for estimating the responses of carbon fluxes to climatic forces in different terrestrial ecosystems, Atmosphere 9 (2018) 83. https://doi.org/10.3390/atmos9030083
  13. L. Yingying, L. Guodong, G. Qiang, X. Yonghai, Radial basis function neural network based comprehensive evaluation for power quality, in: Power System Technology, 2006. PowerCon 2006. International Conference on, IEEE, 2006, pp. 1-5.
  14. C.E. Balas, M.L. Koc, R. Tur, Artificial neural networks based on principal component analysis, fuzzy systems and fuzzy neural networks for preliminary design of rubble mound breakwaters, Appl. Ocean Res. 32 (2010) 425-433. https://doi.org/10.1016/j.apor.2010.09.005
  15. A. Ergin, I.H. Ozolcer, F. Sahin, Evaluating coastal scenery using fuzzy logic: application at selected sites in Western Black Sea coastal region of Turkey, Ocean Eng. 37 (2010) 583-591. https://doi.org/10.1016/j.oceaneng.2010.02.003
  16. H.Y. Wu, K.L. Chen, Z.H. Chen, Q.H. Chen, Y.P. Qiu, J.C. Wu, J.F. Zhang, Evaluation for the ecological quality status of coastal waters in East China Sea using fuzzy integrated assessment method, Mar. Pollut. Bull. 64 (2012) 546-555. https://doi.org/10.1016/j.marpolbul.2011.12.022
  17. L.A. Zadeh, Information and control, Fuzzy sets 8 (1965) 338-353.
  18. Q. Xie, J.-Q. Ni, Z. Su, Fuzzy comprehensive evaluation of multiple environmental factors for swine building assessment and control, J. Hazard Mater. 340 (2017) 463-471. https://doi.org/10.1016/j.jhazmat.2017.07.024
  19. C.J. Gao, D.P. Li, Fuzzy comprehensive assessment on environmental impact of petroleum project, in: Applied Mechanics and Materials, Trans Tech Publ, 2013, pp. 734-737.
  20. L. Liu, J. Zhou, X. An, Y. Zhang, L. Yang, Using fuzzy theory and information entropy for water quality assessment in Three Gorges region, China, Expert Syst. Appl. 37 (2010) 2517-2521. https://doi.org/10.1016/j.eswa.2009.08.004
  21. W. Chu, Y. Li, C. Liu, W. Mou, L. Tang, A manufacturing resource allocation method with knowledge-based fuzzy comprehensive evaluation for aircraft structural parts, Int. J. Prod. Res. 52 (2014) 3239-3258. https://doi.org/10.1080/00207543.2013.869369
  22. J. Jiao, H. Ren, S. Sun, Assessment of surface ship environment adaptability in seaways: a fuzzy comprehensive evaluation method, Int. J. Nav. Arch. Ocean 8 (2016) 344-359. https://doi.org/10.1016/j.ijnaoe.2016.05.002
  23. F. Jiang, Q. Zheng, W. Shi, The applied research of fuzzy comprehensive evaluation on talent training mode of safety engineering, Procedia Engineering 43 (2012) 425-430. https://doi.org/10.1016/j.proeng.2012.08.073
  24. J. Kang, J. Zhang, J. Gao, Improving performance evaluation of health, safety and environment management system by combining fuzzy cognitive maps and relative degree analysis, Saf. Sci. 87 (2016) 92-100. https://doi.org/10.1016/j.ssci.2016.03.023
  25. D. Li, Y. Sui-huai, W. Wen-jun, Research on fuzzy comprehensive evaluation of human-machine interface layout of driller control room, in: Computational and Information Sciences (ICCIS), 2013 Fifth International Conference on, IEEE, 2013, pp. 1114-1117.
  26. F.G. Paas, J.J. Van Merrienboer, The efficiency of instructional conditions: an approach to combine mental effort and performance measures, Hum. Factors 35 (1993) 737-743. https://doi.org/10.1177/001872089303500412
  27. Y.-Y. Yeh, C.D. Wickens, Dissociation of performance and subjective measures of workload, Hum. Factors 30 (1988) 111-120. https://doi.org/10.1177/001872088803000110
  28. V.J. Gawron, Human Performance, Workload, and Situational Awareness Measures Handbook, CRC Press, 2008.
  29. S. Yan, C.C. Tran, Y. Wei, J.L. Habiyaremye, Driver's mental workload prediction model based on physiological indices, Int. J. Occup. Saf. Ergon. (2017) 1-9.
  30. S.-L. Hwang, Y.-J. Yau, Y.-T. Lin, J.-H. Chen, T.-H. Huang, T.-C. Yenn, C.-C. Hsu, Predicting work performance in nuclear power plants, Saf. Sci. 46 (2008) 1115-1124. https://doi.org/10.1016/j.ssci.2007.06.005
  31. R.F. Dyer, J.J. Matthews, C.E. Wright, K.L. Yudowitch, Questionnaire construction manual, in: DTIC Document, 1976.
  32. D. de Waard, B. Lewis-Evans, Self-report scales alone cannot capture mental workload, Cogn. Technol. Work 16 (2014) 303-305. https://doi.org/10.1007/s10111-014-0277-z
  33. S. Hart, L. Staveland, Development of NASA-TLX (task load index): results of empirical and theoretical research, Hum. Mental Workload (1988) 139-183.
  34. S. Rubio, E. Diaz, J. Martin, J.M. Puente, Evaluation of subjective mental workload: a comparison of SWAT, NASA-TLX, and workload profile methods, Appl. Psychol. 53 (2004) 61-86. https://doi.org/10.1111/j.1464-0597.2004.00161.x
  35. Y. Lean, F. Shan, Brief review on physiological and biochemical evaluations of human mental workload, Hum. Factors Ergon. Manuf. 22 (2012) 177-187. https://doi.org/10.1002/hfm.20269
  36. T.Q. Tran, R.L. Boring, D.D. Dudenhoeffer, B.P. Hallbert, M.D. Keller, T.M. Anderson, Advantages and disadvantages of physiological assessment for next generation control room design, in: Human Factors and Power Plants and HPRCT 13th Annual Meeting, 2007 IEEE 8th, IEEE, 2007, pp. 259-263.
  37. T. Heine, G. Lenis, P. Reichensperger, T. Beran, O. Doessel, B. Deml, Electrocardiographic features for the measurement of drivers' mental workload, Appl. Ergon. 61 (2017) 31-43. https://doi.org/10.1016/j.apergo.2016.12.015
  38. G.F. Wilson, An analysis of mental workload in pilots during flight using multiple psychophysiological measures, Int. J. Aviat. Psychol. 12 (2002) 3-18. https://doi.org/10.1207/S15327108IJAP1201_2
  39. J.L. Rosch, J.J. Vogel-Walcutt, A review of eye-tracking applications as tools for training, Cognit. Technol. Work 15 (2013) 313-327. https://doi.org/10.1007/s10111-012-0234-7
  40. D. Toker, C. Conati, B. Steichen, G. Carenini, Individual user characteristics and information visualization: connecting the dots through eye tracking, in: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, ACM, 2013, pp. 295-304.
  41. J.S. Ha, Y.-J. Byon, J. Baek, P.H. Seong, Method for inference of operators' thoughts from eye movement data in nuclear power plants, Nucl. Eng. Technol. 48 (2016) 129-143. https://doi.org/10.1016/j.net.2015.09.004
  42. Z.-H. Zou, Y. Yun, J.-N. Sun, Entropy method for determination of weight of evaluating indicators in fuzzy synthetic evaluation for water quality assessment, J. Environ. Sci-china 18 (2006) 1020-1023. https://doi.org/10.1016/S1001-0742(06)60032-6
  43. X. Gai, The design and evaluation of ship navigation display and control system based on cognitive load, in: Harbin Engineering University Thesis, China, 2015.
  44. D. Liu, Z. Zou, Water quality evaluation based on improved fuzzy matterelement method, J. Environ. Sci. (China) 24 (2012) 1210-1216. https://doi.org/10.1016/S1001-0742(11)60938-8
  45. L.I. Xiao-Xing, D.U. Jun-Kai, F.U. Yao, Water quality evaluation model of normal cloud based on coefficient variation and entropy weight, Water Resour. Power 10 (2017) 55-58. China.
  46. P.V. Carvalho, J.O. Gomes, M.R. Borges, Human centered design for nuclear power plant control room modernization, in: 4th Workshop HCP Human Centered Processes, Citeseer, 2011.
  47. F. Nachreiner, P. Nickel, I. Meyer, Human factors in process control systems: the design of humanemachine interfaces, Saf. Sci. 44 (2006) 5-26. https://doi.org/10.1016/j.ssci.2005.09.003
  48. S. Yan, C.C. Tran, Y. Chen, K. Tan, J.L. Habiyaremye, Effect of user interface layout on the operators' mental workload in emergency operating procedures in nuclear power plants, Nucl. Eng. Des. 322 (2017) 266-276. https://doi.org/10.1016/j.nucengdes.2017.07.012
  49. T.M. Lanzetta, W.N. Dember, J.S. Warm, D.B. Berch, Effects of task type and stimulus heterogeneity on the event rate function in sustained attention, Hum. Factors: J. Hum. Fact. Ergon. Soc. 29 (1987) 625-633. https://doi.org/10.1177/001872088702900602
  50. M. Castor, E. Hanson, E. Svensson, S. Nahlinder, P. LeBlaye, I. MacLeod, N. Wright, J. Alfredson, L. Agren, P. Berggren, GARTEUR Handbook of Mental Workload Measurement, GARTEUR, Group for Aeronautical Research and Technology in Europe, Flight Mechanics Action Group FM, 2003, p. 164. AG13.
  51. S. Moresi, J.J. Adam, J. Rijcken, P.W. Van Gerven, H. Kuipers, J. Jolles, Pupil dilation in response preparation, Int. J. Psychophysiol. 67 (2008) 124-130. https://doi.org/10.1016/j.ijpsycho.2007.10.011
  52. S.M. Wierda, H. van Rijn, N.A. Taatgen, S. Martens, Pupil dilation deconvolution reveals the dynamics of attention at high temporal resolution, Proc. Natl. Acad. Sci. Unit. States Am. 109 (2012) 8456-8460. https://doi.org/10.1073/pnas.1201858109
  53. K.F. Van Orden, T.-P. Jung, S. Makeig, Combined eye activity measures accurately estimate changes in sustained visual task performance, Biol. Psychol. 52 (2000) 221-240. https://doi.org/10.1016/S0301-0511(99)00043-5
  54. M. Nakayama, K. Takahashi, Y. Shimizu, The act of task difficulty and eye-movement frequency for the'Oculo-motor indices, in: Proceedings of the 2002 Symposium on Eye Tracking Research & Applications, New Orleans, Louisiana, 2002, pp. 37-42.
  55. U. Ahlstrom, F.J. Friedman-Berg, Using eye movement activity as a correlate of cognitive workload, Int. J. Ind. Ergon. 36 (2006) 623-636. https://doi.org/10.1016/j.ergon.2006.04.002
  56. L.L. Di Stasi, A. Antoli, J.J. Canas, Evaluating mental workload while interacting with computer-generated artificial environments, Entertain. Comput. 4 (2013) 63-69. https://doi.org/10.1016/j.entcom.2011.03.005
  57. P. Lehrer, M. Karavidas, S.E. Lu, E. Vaschillo, B. Vaschillo, A. Cheng, Cardiac data increase association between self-report and both expert ratings of task load and task performance in flight simulator tasks: an exploratory study, Int. J. Psychophysiol. 76 (2010) 80-87. https://doi.org/10.1016/j.ijpsycho.2010.02.006
  58. A. Pauzie, Evaluation of the driver's mental workload: a necessity in a perspective of in-vehicle system design for road safety improvement, Cognit. Technol. Work 16 (2014) 299-302. https://doi.org/10.1007/s10111-014-0276-0
  59. M. Naderpour, J. Lu, G. Zhang, A safety-critical decision support system evaluation using situation awareness and workload measures, Reliab. Eng. Syst. Saf. 150 (2016) 147-159. https://doi.org/10.1016/j.ress.2016.01.024

Cited by

  1. A Systematic Review of Physiological Measures of Mental Workload vol.16, pp.15, 2019, https://doi.org/10.3390/ijerph16152716
  2. Using Artificial Neural Networks for Predicting Mental Workload in Nuclear Power Plants Based on Eye Tracking vol.206, pp.1, 2019, https://doi.org/10.1080/00295450.2019.1620055
  3. Enhanced Accuracy for Multiclass Mental Workload Detection Using Long Short-Term Memory for Brain–Computer Interface vol.14, 2019, https://doi.org/10.3389/fnins.2020.00584
  4. Measuring and multilevel fuzzy comprehensive predicting comfort parameters of soft materials by a new handle evaluation system vol.90, pp.23, 2020, https://doi.org/10.1177/0040517520928792
  5. Evaluating aircraft cockpit emotion through a neural network approach vol.35, pp.1, 2019, https://doi.org/10.1017/s0890060420000475
  6. Fuzzy clustering analysis of comprehensive hand of polyester fabric based on the CHES-FY system vol.91, pp.7, 2021, https://doi.org/10.1177/0040517520957409
  7. Fuzzy FMECA analysis of radioactive gas recovery system in the SPES experimental facility vol.53, pp.5, 2019, https://doi.org/10.1016/j.net.2020.11.011
  8. Development of an Ergonomic User Interface Design of Calcium Imaging Processing System vol.12, pp.4, 2019, https://doi.org/10.3390/app12041877