DOI QR코드

DOI QR Code

Telmisartan increases hepatic glucose production via protein kinase C ζ-dependent insulin receptor substrate-1 phosphorylation in HepG2 cells and mouse liver

  • Cho, Kae Won (Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University) ;
  • Cho, Du-Hyong (Department of Pharmacology, Yeungnam University College of Medicine)
  • 투고 : 2018.10.19
  • 심사 : 2018.11.07
  • 발행 : 2019.01.31

초록

Background: Dysregulation of hepatic glucose production (HGP) contributes to the development of type 2 diabetes mellitus. Telmisartan, an angiotensin II type 1 receptor blocker (ARB), has various ancillary effects in addition to common blood pressure-lowering effects. The effects and mechanism of telmisartan on HGP have not been fully elucidated and, therefore, we investigated these phenomena in hyperglycemic HepG2 cells and high-fat diet (HFD)-fed mice. Methods: Glucose production and glucose uptake were measured in HepG2 cells. Expression levels of phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase ${\alpha}$ ($G6Pase-{\alpha}$), and phosphorylation levels of insulin receptor substrate-1 (IRS-1) and protein kinase C ${\zeta}$ ($PKC{\zeta}$) were assessed by western blot analysis. Animal studies were performed using HFD-fed mice. Results: Telmisartan dose-dependently increased HGP, and PEPCK expression was minimally increased at a $40{\mu}M$ concentration without a change in $G6Pase-{\alpha}$ expression. In contrast, telmisartan increased phosphorylation of IRS-1 at Ser302 ($p-IRS-1-Ser^{302}$) and decreased $p-IRS-1-Tyr^{632}$ dose-dependently. Telmisartan dose-dependently increased $p-PKC{\zeta}-Thr^{410}$ which is known to reduce insulin action by inducing IRS-1 serine phosphorylation. Ectopic expression of dominant-negative $PKC{\zeta}$ significantly attenuated telmisartan-induced HGP and $p-IRS-1-Ser^{302}$ and -inhibited $p-IRS-1-Tyr^{632}$. Among ARBs, including losartan and fimasartan, only telmisartan changed IRS-1 phosphorylation and pretreatment with GW9662, a specific and irreversible peroxisome proliferator-activated receptor ${\gamma}$ ($PPAR{\gamma}$) antagonist, did not alter this effect. Finally, in the livers from HFD-fed mice, telmisartan increased $p-IRS-1-Ser^{302}$ and decreased $p-IRS-1-Tyr^{632}$, which was accompanied by an increase in $p-PKC{\zeta}-Thr^{410}$. Conclusion: These results suggest that telmisartan increases HGP by inducing $p-PKC{\zeta}-Thr^{410}$ that increases $p-IRS-1-Ser^{302}$ and decreases $p-IRS-1-Tyr^{632}$ in a $PPAR{\gamma}$-independent manner

키워드

참고문헌

  1. Ekberg K, Landau BR, Wajngot A, Chandramouli V, Efendic S, Brunengraber H, et al. Contributions by kidney and liver to glucose production in the postabsorptive state and after 60 h of fasting. Diabetes 1999;48:292-8. https://doi.org/10.2337/diabetes.48.2.292
  2. Hatting M, Tavares CDJ, Sharabi K, Rines AK, Puigserver P. Insulin regulation of gluconeogenesis. Ann N Y Acad Sci 2018;1411:21-35. https://doi.org/10.1111/nyas.13435
  3. Saltiel AR, Kahn CR. Insulin signalling and the regulation of glucose and lipid metabolism. Nature 2001;414:799-806. https://doi.org/10.1038/414799a
  4. Taniguchi CM, Emanuelli B, Kahn CR. Critical nodes in signalling pathways: insights into insulin action. Nat Rev Mol Cell Biol 2006;7:85-96. https://doi.org/10.1038/nrm1837
  5. Boura-Halfon S, Zick Y. Phosphorylation of IRS proteins, insulin action, and insulin resistance. Am J Physiol Endocrinol Metab 2009;296:E581-91. https://doi.org/10.1152/ajpendo.90437.2008
  6. Tamemoto H, Kadowaki T, Tobe K, Yagi T, Sakura H, Hayakawa T, et al. Insulin resistance and growth retardation in mice lacking insulin receptor substrate-1. Nature 1994;372:182-6. https://doi.org/10.1038/372182a0
  7. Schmitz-Peiffer C, Biden TJ. Protein kinase C function in muscle, liver, and beta-cells and its therapeutic implications for type 2 diabetes. Diabetes 2008;57:1774-83. https://doi.org/10.2337/db07-1769
  8. Andros V, Egger A, Dua U. Blood pressure goal attainment according to JNC 7 guidelines and utilization of antihypertensive drug therapy in MCO patients with type 1 or type 2 diabetes. J Manag Care Pharm 2006;12:303-9. https://doi.org/10.18553/jmcp.2006.12.4.303
  9. Michel MC, Foster C, Brunner HR, Liu L. A systematic comparison of the properties of clinically used angiotensin II type 1 receptor antagonists. Pharmacol Rev 2013;65:809-48. https://doi.org/10.1124/pr.112.007278
  10. Takagi H, Umemoto T; All-Literature Investigation of Cardiovascular Evidence Group. A meta-analysis of randomized trials of telmisartan versus active controls for insulin resistance in hypertensive patients. J Am Soc Hypertens 2014;8:578-92. https://doi.org/10.1016/j.jash.2014.05.006
  11. Kubik M, Chudek J, Adamczak M, Wiecek A. Telmisartan improves cardiometabolic profile in obese patients with arterial hypertension. Kidney Blood Press Res 2012;35:281-9. https://doi.org/10.1159/000334951
  12. Li L, Luo Z, Yu H, Feng X, Wang P, Chen J, et al. Telmisartan improves insulin resistance of skeletal muscle through peroxisome proliferator-activated receptor-${\delta}$ activation. Diabetes 2013;62:762-74. https://doi.org/10.2337/db12-0570
  13. Ushijima K, Takuma M, Ando H, Ishikawa-Kobayashi E, Nozawa M, Maekawa T, et al. Effects of telmisartan and valsartan on insulin sensitivity in obese diabetic mice. Eur J Pharmacol 2013;698:505-10. https://doi.org/10.1016/j.ejphar.2012.11.022
  14. Cho DH, Seo J, Park JH, Jo C, Choi YJ, Soh JW, et aI. Cyclin-dependent kinase 5 phosphorylates endothelial nitric oxide synthase at serine 116. Hypertension 2010;55:345-52. https://doi.org/10.1161/HYPERTENSIONAHA.109.140210
  15. Soh JW, Lee EH, Prywes R, Weinstein IB. Novel roles of specific isoforms of protein kinase C in activation of the c-fos serum response element. Mol Cell Biol 1999;19:1313-24. https://doi.org/10.1128/MCB.19.2.1313
  16. Bhattacharya S, Ghosh R, Maiti S, Khan GA, Sinha AK. The activation by glucose of liver membrane nitric oxide synthase in the synthesis and translocation of glucose transporter-4 in the production of insulin in the mice hepatocytes. PLoS One 2013;8:e81935. https://doi.org/10.1371/journal.pone.0081935
  17. Burgess SC, He T, Yan Z, Lindner J, Sherry AD, Malloy CR, et al. Cytosolic phosphoenolpyruvate carboxykinase does not solely control the rate of hepatic gluconeogenesis in the intact mouse liver. Cell Metab 2007;5:313-20. https://doi.org/10.1016/j.cmet.2007.03.004
  18. Zang M, Zuccollo A, Hou X, Nagata D, Walsh K, Herscovitz H, et al. AMP-activated protein kinase is required for the lipid-lowering effect of metformin in insulin-resistant human HepG2 cells. J Biol Chem 2004;279:47898-905. https://doi.org/10.1074/jbc.M408149200
  19. Liu YF, Paz K, Herschkovitz A, Alt A, Tennenbaum T, Sampson SR, et al. Insulin stimulates PKCzeta -mediated phosphorylation of insulin receptor substrate-1 (IRS-1). A self-attenuated mechanism to negatively regulate the function of IRS proteins. J Biol Chem 2001;276:14459-65. https://doi.org/10.1074/jbc.M007281200
  20. Ravichandran LV, Esposito DL, Chen J, Quon MJ. Protein kinase C-zeta phosphorylates insulin receptor substrate-1 and impairs its ability to activate phosphatidylinositol 3-kinase in response to insulin. J Biol Chem 2001;276:3543-9. https://doi.org/10.1074/jbc.M007231200
  21. Bandyopadhyay G, Standaert ML, Sajan MP, Karnitz LM, Cong L, Quon MJ, et al. Dependence of insulin-stimulated glucose transporter 4 translocation on 3-phosphoinositide-dependent protein kinase-1 and its target threonine-410 in the activation loop of protein kinase C-zeta. Mol Endocrinol 1999;13:1766-72. https://doi.org/10.1210/mend.13.10.0364
  22. Leesnitzer LM, Parks DJ, Bledsoe RK, Cobb JE, Collins JL, Consler TG, et al. Functional consequences of cysteine modification in the ligand binding sites of peroxisome proliferator activated receptors by GW9662. Biochemistry 2002;41:6640-50. https://doi.org/10.1021/bi0159581
  23. Kintscher U. ONTARGET, TRANSCEND, and PRoFESS: new-onset diabetes, atrial fibrillation, and left ventricular hypertrophy. J Hypertens 2009;27(Supple 2);S36-9. https://doi.org/10.1097/01.hjh.0000354519.67451.96
  24. Cho H, Mu J, Kim JK, Thorvaldsen JL, Chu Q, Crenshaw EB 3rd, Kaestner KH, et al. Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKB beta). Science 2001;292:1728-31. https://doi.org/10.1126/science.292.5522.1728
  25. Cho H, Thorvaldsen JL, Chu Q, Feng F, Birnbaum MJ. Akt1/PKBalpha is required for normal growth but dispensable for maintenance of glucose homeostasis in mice. J Biol Chem 2001;276:38349-52. https://doi.org/10.1074/jbc.C100462200
  26. Song KH, Park JH, Jo I, Park JY, Seo J, Kim SA, et al. Telmisartan attenuates hyperglycemia-exacerbated VCAM-1 expression and monocytes adhesion in $TNF{\alpha}$-stimulated endothelial cells by inhibiting $IKK{\beta}$ expression. Vascul Pharmacol 2016;78:43-52. https://doi.org/10.1016/j.vph.2015.10.001
  27. Song KH, Bae SJ, Chang J, Park JH, Jo I, Cho KW, et al. Telmisartan mitigates hyperglycemia-induced vascular inflammation by increasing $GSK3{\beta}$-Ser(9) phosphorylation in endothelial cells and mouse aortas. Biochem Biophys Res Commun 2017;491:903-11. https://doi.org/10.1016/j.bbrc.2017.07.134
  28. Obermoser V, Urban ME, Murgueitio MS, Wolber G, Kintscher U, Gust R. New telmisartan-derived $PPAR{\gamma}$ agonists: impact of the 3D-binding mode on the pharmacological profile. Eur J Med Chem 2016;124:138-52. https://doi.org/10.1016/j.ejmech.2016.08.027
  29. Moeschel K, Beck A, Weigert C, Lammers R, Kalbacher H, Voelter W, et al. Protein kinase C-zeta-induced phosphorylation of Ser318 in insulin receptor substrate-1 (IRS-1) attenuates the interaction with the insulin receptor and the tyrosine phosphorylation of IRS-1. J Biol Chem 2004;279:25157-63. https://doi.org/10.1074/jbc.M402477200
  30. Smith DH, Matzek KM, Kempthorne-Rawson J. Dose response and safety of telmisartan in patients with mild to moderate hypertension. J Clin Pharmacol 2000;40:1380-90.
  31. Zhang P, Zhang Y, Chen X, Li R, Yin J, Zhong D. Pharmacokinetics of telmisartan in healthy Chinese subjects after oral administration of two dosage levels. Arzneimittelforschung 2006;56:569-73. https://doi.org/10.1055/s-0031-1296753
  32. Cianchetti S, Del Fiorentino A, Colognato R, Di Stefano R, Franzoni F, Pedrinelli R. Anti-inflammatory and anti-oxidant properties of telmisartan in cultured human umbilical vein endothelial cells. Atherosclerosis 2008;198:22-8. https://doi.org/10.1016/j.atherosclerosis.2007.09.013
  33. Nakano A, Hattori Y, Aoki C, Jojima T, Kasai K. Telmisartan inhibits cytokine-induced nuclear factor-kappaB activation independently of the peroxisome proliferator-activated receptor-gamma. Hypertens Res 2009;32:765-9. https://doi.org/10.1038/hr.2009.95