DOI QR코드

DOI QR Code

The μ-synthesis and analysis of water level control in steam generators

  • Received : 2018.05.16
  • Accepted : 2018.09.26
  • Published : 2019.02.25

Abstract

The robust controller synthesis and analysis of the water level process in the U-tube system generator (UTSG) is addressed in this paper. The parameter uncertainties of the steam generator (SG) are modeled as multiplicative perturbations which are normalized by designing suitable weighting functions. The relative errors of the nominal SG model with respect to the other operating power level models are employed to specify the weighting functions for normalizing the plant uncertainties. Then, a robust controller is designed based on ${\mu}$-synthesis and D-K iteration, and its stability robustness is verified over the whole range of power operations. A gain-scheduled controller with $H_{\infty}$-synthesis is also designed to compare its robustness with the proposed controller. The stability analysis is accomplished and compared with the previous QFT design. The ${\mu}$-analysis of the system shows that the proposed controller has a favorable stability robustness for the whole range of operating power conditions. The proposed controller response is simulated against the power level deviation in start-up and shutdown stages and compared with the other concerning controllers.

Keywords

References

  1. E. Irving, C. Miossec, J. Tassart, Toward efficient full automatic operation of the PWR steam generator with water level adaptive control, in: Proceeding 2nd Int. Conf. Boil. Dyn. Control Nucl. Power Station, British Nuclear Energy Society, London, 1980, pp. 309-329.
  2. S.K. Menon, A.G. Parlos, Gain-scheduled nonlinear control of u-tube steam generator water level, Nucl. Sci. Eng. 111 (1992) 294-308, https://doi.org/10.13182/NSE92-A23942.
  3. O. Safarzadeh, A. Khaki-Sedigh, A.S. Shirani, Identification and robust water level control of horizontal steam generators using quantitative feedback theory, Energy Convers. Manag. 52 (2011) 3103-3111, https://doi.org/10.1016/j.enconman.2011.04.023.
  4. J.I. Choi, J.E. Meyer, D.D. Lanning, Automatic controller for steam generator water level during low power operation, Nucl. Eng. Des. 117 (1989) 263-274, https://doi.org/10.1016/0029-5493(89)90175-1.
  5. K.K. Kim, J.E. Meyer, D.D. Lanning, J.A. Bernard, Design and evaluation of model-based compensators for the control of steam generator level, in: Am. Control Conf, 1993, pp. 2055-2060.
  6. M.V. Kothare, B. Mettler, M. Morari, P. Bendotti, C.M. Falinower, Level control in the steam generator of a nuclear power plant, IEEE Trans. Contr. Syst. Technol. 8 (2000) 55-69, https://doi.org/10.1109/87.817692.
  7. M.G. Na, Y.R. Sim, Y.J. Lee, Design of an adaptive predictive controller for steam generators, IEEE Trans. Nucl. Sci. 50 (2003) 186-193, https://doi.org/10.1109/TNS.2002.807854.
  8. K. Hu, J. Yuan, Multi-model predictive control method for nuclear steam generator water level, Energy Convers. Manag. 49 (2008) 1167-1174, https://doi.org/10.1016/j.enconman.2007.09.006.
  9. G.R. Ansarifar, H.A. Talebi, H. Davilu, Adaptive estimator-based dynamic sliding mode control for the water level of nuclear steam generators, Prog. Nucl. Energy 56 (2012) 61-70, https://doi.org/10.1016/j.pnucene.2011.12.008.
  10. W. Tan, Water level control for a nuclear steam generator, Nucl. Eng. Des. 241 (2011) 1873-1880, https://doi.org/10.1016/j.nucengdes.2010.12.010.
  11. O. Safarzadeh, A.S. Shirani, Robust water level control of the U-tube steam generator, J. Energy Eng. 139 (2013) 161-168, https://doi.org/10.1061/(ASCE)EY.1943-7897.0000107.
  12. S.R. Munasinghe, M.S. Kim, J.J. Lee, Adaptive neurofuzzy controller to regulate UTSG water level in nuclear power plants, IEEE Trans. Nucl. Sci. 52 (2005) 421-429, https://doi.org/10.1109/TNS.2004.842723.
  13. K. Kavaklioglu, Support vector regression model based predictive control of water level of U-tube steam generators, Nucl. Eng. Des. 278 (2014) 651-660, https://doi.org/10.1016/j.nucengdes.2014.08.018.
  14. A. Fakhrazari, M. Boroushaki, Adaptive critic-based neurofuzzy controller for the steam generator water level, IEEE Trans. Nucl. Sci. 55 (2008) 1678-1685, https://doi.org/10.1109/TNS.2008.924058.
  15. M.G. Na, Design of a genetic fuzzy controller for the nuclear steam generator water level control, IEEE Trans. Nucl. Sci. 45 (1998) 2261-2271, https://doi.org/10.1109/23.709657.
  16. H. Habibiyan, S. Setayeshi, H. Arab-Alibeik, A fuzzy-gain-scheduled neural controller for nuclear steam generators, Ann. Nucl. Energy 31 (2004) 1765-1781, https://doi.org/10.1016/j.anucene.2004.03.014.
  17. S. Beyhan, K. Kavaklioglu, Comprehensive modeling of U-tube steam generators using extreme learning machines, IEEE Trans. Nucl. Sci. 62 (2015) 2245-2254, https://doi.org/10.1109/TNS.2015.2462126.
  18. A.G. Parlos, O.T. Rais, Nonlinear control of U-tube steam generators via $H{\infty}$ control, Contr. Eng. Pract. 8 (2000) 921-936, https://doi.org/10.1016/S0967-0661(00)00020-4.
  19. J.J. Sohn, P.H. Seong, A steam generator model identification and robust $H{\infty}$ controller design with $\nu$-gap metric for a feedwater control system, Ann. Nucl. Energy 37 (2010) 180-195, https://doi.org/10.1016/j.anucene.2009.11.005.
  20. L. Wei, F. Fang, $H{\infty}$ -based LQR water level control for nuclear U-tube steam generators, in: Control Decis. Conf, 2013, pp. 4076-4080.
  21. A. Osgouee, J. Jiang, Robust nonlinear method for steam generator level control, Nucl. Technol. 181 (2013) 493-506, https://doi.org/10.13182/NT13-A15806.
  22. G. Ablay, A robust estimator-based optimal algebraic approach to steam generator feedwater control system, Turk. J. Electr. Eng. Comput. Sci. 24 (2016) 206-218, https://doi.org/10.3906/elk-1307-46.
  23. Z. Gang, P. Wei, Z. Dafa, Analysis of water level control methods for nuclear steam generator, At. ENERGY Sci. Technol. (2004) 19-23.
  24. S. Skogestad, I. Postlethwaite, Multivariable Feedback Control: Analysis and Design, second ed., Wiley, New York, 2005.
  25. G.J. Balas, J.C. Doyle, K. Glover, A. Packard, R. Smith, М-analysis and Synthesis Toolbox, MUSYN Inc. MathWorks, Natick MA, 1993.
  26. K. Glover, All optimal Hankel-norm approximations of linear multivariable systems and their $L{\infty}$-error bounds, Int. J. Contr. 39 (1984) 1115-1193, https://doi.org/10.1080/00207178408933239.

Cited by

  1. Water Pump Control: A Hybrid Data-Driven and Model-Assisted Active Disturbance Rejection Approach vol.11, pp.5, 2019, https://doi.org/10.3390/w11051066
  2. Optimal feed-water level control for steam generator in nuclear power plant based on meta-heuristic optimization vol.13, pp.1, 2019, https://doi.org/10.1080/16878507.2020.1748350
  3. Analysis of Measuring Characteristics of the Differential Pressure Water-Level Measurement System Under Depressurization Condition vol.8, 2020, https://doi.org/10.3389/fenrg.2020.00145