References
- H.M. Hashemian, On line monitoring applications in nuclear power plants, Prog. Nucl. Energy 53 (2011) 167-181. https://doi.org/10.1016/j.pnucene.2010.08.003
- D. Richard, K. Frederic, R. Jose, L. Francois, J.-L. Germain, Detection, Isolation and identification of sensor faults in nuclear power plants, IEEE Trans. Contr. Syst. Technol. 5 (1997) 42-60. https://doi.org/10.1109/87.553664
- J. Farhan, A. Muhanmmad, H. Inamul, Q.K. Khan, I. Masood, Fault diagnosis of Pakistan Research Reactor-2 with data-driven techniques, Ann. Nucl. Energy 90 (2016) 433-440. https://doi.org/10.1016/j.anucene.2015.12.023
- B. Piero, C. Antonio, M. Francesca, Z. Enrico, An ensemble approach to sensor fault detection and signal reconstruction for nuclear system control, Ann. Nucl. Energy 37 (2010) 778-790. https://doi.org/10.1016/j.anucene.2010.03.002
- S.W. Wang, J.T. Cui, Sensor-fault detection, diagnosis and estimation for centrifugal chiller systems using principal-component analysis method, Appl. Energy 82 (2005) 197-213. https://doi.org/10.1016/j.apenergy.2004.11.002
- Y.P. Hu, G.N. Li, H.X. Chen, H.R. Li, J.Y. Liu, Sensitivity analysis for PCA-based chiller sensor fault detection, Int. J. Refrig. 63 (2016) 133-143. https://doi.org/10.1016/j.ijrefrig.2015.11.006
- F. Li, Dynamic Modeling, Sensor Placement Design, and Fault Diagnosis of Nuclear Desalination Systems, The University of Tennessee, 2011. PhD thesis.
- J.H. Chen, H.K. Li, D.R. Sheng, W. Li, A hybrid data-driven modeling method on sensor condition monitoring and fault diagnosis for power plants, Electr. Power Energy Syst. 71 (2015) 274-284. https://doi.org/10.1016/j.ijepes.2015.03.012
- H.-B. Jun, D. Kim, A Bayesian network-based approach for fault analysis, Expert Syst. Appl. 81 (2017) 332-348. https://doi.org/10.1016/j.eswa.2017.03.056
- A. Messai, A. Mellit, I. Abdellani, P.A. Massi, On-line fault detection of a fuel rod temperature measurement sensor in a nuclear reactor core using ANNs, Prog. Nucl. Energy 79 (2015) 8-21. https://doi.org/10.1016/j.pnucene.2014.10.013
- X. Xiao, J.W. Hines, E.U. Robert, Sensor validation and fault detection using neural networks, in: Proceedings of Maintenance and Reliability Conference (MARCON), University of Tennessee, 1999.
- R. Perla, S. Mukhopadhyay, A.N. Samanta, Sensor fault detection and isolation using neural networks, in: Proceedings of TENCO 2004 IEEE Rdgion10 Conference, D, 2004, pp. 676-679.
- K. Salahshoor, M. Kordenstani, M.S. Khoshoro, Fault detection and diagnosis of an industrial steam turbine using fusion of SVM (support vector machine) and ANFIS (adaptive neuro-fuzzy inference system) classifiers, Energy 35 (2010) 5472-5482. https://doi.org/10.1016/j.energy.2010.06.001
- K.Y. Chen, L.S. Chen, M.C. Chen, C.L. Lee, Using SVM based method for equipment fault detection in a thermal power plant, Comput. Ind. 62 (2011) 42-50. https://doi.org/10.1016/j.compind.2010.05.013
- J.P. Ma, J. Jiang, Applications of fault detection and diagnosis methods in nuclear power plants: a review, Prog. Nucl. Energy 53 (2011) 255-266. https://doi.org/10.1016/j.pnucene.2010.12.001
- A. Kusiak, Z. Song, Sensor fault detection in power plants, J. Energy Eng. 135 (2009) 127-137. https://doi.org/10.1061/(ASCE)0733-9402(2009)135:4(127)
- J.W. Hines, R. Seibert, Technical review of on-line monitoring techniques for performance assessment: state-of-the-Art, Nuclear Regulatory Commission 1 (2006). NUREG/CR-6895.
- S. Valle, W.H. Li, S.J. Qin, Selection of the number of principal components: the variance of the reconstruction error criterion with a comparison to other methods, Ind. Eng. Chem. Res. 38 (1999) 4389-4401. https://doi.org/10.1021/ie990110i
- X. Chen, Research on Data Preprocess Method for Thermal Parameters, North China Electric Power University, 2013. Master thesis.
- R.E. Walpole, Probability and Statistics for Engineers and Scientists, ninth ed., Prentice Hall, 2012.
- M.Z. Sun, Vibration signal smoothing method based on MATLAB, Electronic Measurement Technology 30 (2007) 55-57.
- D. Tomassi, D. Milone, J.D.B. Nelson, Wavelet shrinkage using adaptive structured sparsity constraints, Signal Process. 106 (2015) 73-85. https://doi.org/10.1016/j.sigpro.2014.07.001
- J.Z. Liu, X.P. Liu, L. Tian, Combustion control optimization systems based on information fusion technology, East China Electric Power 37 (2009) 2088-2092.
- Y.X. Pei, M. Guo, The fundamental principle and application of sliding average method, Gun Launch & Control Journal 1 (2001) 21-24.
- T. Chen, On reducing false alarms in multivariate statistical process control, Chem. Eng. Res. Des. 88 (2010) 430-436. https://doi.org/10.1016/j.cherd.2009.09.003
Cited by
- Adaptive Principal Component Analysis Combined with Feature Extraction-Based Method for Feature Identification in Manufacturing vol.2019, 2019, https://doi.org/10.1155/2019/5736104
- Dynamic weight-based learning method for data detection in manufacturing vol.12, pp.11, 2019, https://doi.org/10.1177/1687814020971899
- Assessing the Effect of Data Augmentation on Occluded Frontal Faces Using DWT-PCA/SVD Recognition Algorithm vol.2021, 2019, https://doi.org/10.1155/2021/4981394
- Quantify Coal Macrolithotypes of a Whole Coal Seam: A Method Combing Multiple Geophysical Logging and Principal Component Analysis vol.14, pp.1, 2019, https://doi.org/10.3390/en14010213
- Pattern Recognition-Based Technique for Control Rod Position Identification in Pressurized Water Reactors vol.207, pp.4, 2021, https://doi.org/10.1080/00295450.2020.1792742
- Data pre-processing methods for NPP equipment diagnostics algorithms: an overview vol.7, pp.2, 2021, https://doi.org/10.3897/nucet.7.63675