References
- B.H. Shon, S.W. Jeon, Y. Kim, Y.T. Kang, Review: condensation and evaporation characteristics of low GWP refrigerants in plate heat exchanger, Int. J. Air Cond. Refrig. 24 (2) (2016), 1630004. https://doi.org/10.1142/S2010132516300044
- M.S. Mahmud, K. Kariya, A. Miyara, Local Condensation heat transfer characteristics of refrigerant R1234ze(E) flow inside a plate heat exchanger, Int. J. Air Cond. Refrig. 25 (1) (2017), 1750004. https://doi.org/10.1142/S2010132517500043
- J.W. Rose, Condensation heat transfer fundamentals, Chem. Eng. Res. Des. 76 (2) (1998) 143-152. https://doi.org/10.1205/026387698524712
- I.C. Bang, J.H. Jeong, Nanotechnology for advanced nuclear thermal-hydraulics and safety: boiling and condensation, Nucl. Eng. Technol. 43 (3) (2011) 217-242. https://doi.org/10.5516/NET.2011.43.3.217
- P.-Q. Vu, K.-I. Choi, J.T. Oh, H. Cho, An experimental investigation of condensation heat transfer coefficients and pressure drops of refrigerants inside multiport mini-channel tubes, Int. J. Air Cond. Refrig. 25 (2) (2017), 1750013. https://doi.org/10.1142/S2010132517500134
- G. Koch, D.C. Zhang, A. Leipertz, Condensation of steam on the surface of hard coated copper disc, Heat Mass Tran. 32 (1997) 149-156. https://doi.org/10.1007/s002310050105
- G. Pang, D. Dale, D.Y. Kwok, An integrated study of dropwise condensation heat transfer on self-assembled organic surfaces through Fourier transform infra-red spectroscopy and ellipsometry, Int. J. Heat Mass Tran. 48 (2) (2005) 307-316. https://doi.org/10.1016/j.ijheatmasstransfer.2004.08.029
- X. Ma, J. Chen, D. Xu, J. Lin, C. Ren, Z. Long, Influence of processing conditions of polymer film on dropwise condensation heat transfer, Int. J. Heat Mass Tran. 45 (16) (2002) 3405-3411. https://doi.org/10.1016/S0017-9310(02)00059-5
- S. Vemuri, K.J. Kim, B.D. Wood, S. Govindaraju, T.W. Bell, Long term testing for dropwise condensation using self-assembled monolayer coatings of n-octadecyl mercaptan, Appl. Therm. Eng. 26 (4) (2006) 421-429. https://doi.org/10.1016/j.applthermaleng.2005.05.022
- C. Dietz, K. Rykaczewski, A.G. Fedorov, Y. Joshi, Visualizationa of droplet departure on a superhydrophobic surface and implications to heat transfer enhancement during dropwise condensation, Appl. Phys. Lett. 97 (2010) 033104. https://doi.org/10.1063/1.3460275
- K. Kim, S.C. Do, J.S. Ko, J.H. Jeong, Observation of water condensate on hydrophobic micro textured surfaces, Heat Mass Tran. 49 (2013) 955-962. https://doi.org/10.1007/s00231-013-1141-z
- C. Hao, Y. Liu, X. Chen, J. Li, M. Zhang, Y. Zhao, Z. Wang, Bioinspired interfacial materials with enhanced drop mobility: from fundamentals to multifunctional applications, Small 12 (14) (2016) 1825-1839. https://doi.org/10.1002/smll.201503060
- R.A. Erb, Wettability of metals under continuous condensing conditions, J. Phys. Chem. 69 (4) (1965) 1306-1309. https://doi.org/10.1021/j100888a035
- G.A. O'Neil, J.W.Westwater, Dropwise condensation of steam on electroplated silver surfaces, Int. J. Heat Mass Tran. 27 (9) (1984) 1539-1549. https://doi.org/10.1016/0017-9310(84)90266-7
- D. Attinger, C. Frankiewicz, A.R. Betz, T.M. Schutzius, R. Ganguly, A. Das, C. Kim, C.M. Megaridis, Surface engineering for phase change heat transfer: a review, MRS Energy Sustain. 1 (2014). E4. https://doi.org/10.1557/mre.2014.9
- A.T. Paxson, J.L. Yague, K.K. Gleason, K.K. Varanasi, Stable dropwise condensation for enhancing heat transfer via the initiated chemical vapor deposition (iCVD) of grafted polymer films, Adv. Mater. 26 (3) (2014) 418-423. https://doi.org/10.1002/adma.201303065
- D.J. Preston, D.L. Mafra, N. Miljkovic, J. Kong, E.N. Wang, Scalable graphene coatings for enhanced condensation heat transfer, Nano Lett. 15 (5) (2015) 2902-2909. https://doi.org/10.1021/nl504628s
- G.S. Was, Ion beam modification of metals: compositional and microstructural changes, Prog. Surf. Sci. 32 (3-4) (1989) 211-332. https://doi.org/10.1016/0079-6816(89)90005-1
- Q. Zhao, D. Zhang, J. Lin, A study of surface materials achieving dropwise condensation, in: Proceedings of the First International Conference on Heat Transfer in Energy Conservation, Shenyang, vol. 1, 1988, pp. 177-179.
- M.H. Rausch, A.P. Froba, A. Leipertz, Dropwise condensation heat transfer on ion implanted aluminum surfaces, Int. J. Heat Mass Tran. 51 (5-6) (2008) 1061-1070. https://doi.org/10.1016/j.ijheatmasstransfer.2006.05.047
- M.H. Rausch, A. Leipertz, A.P. Froba, On the characteristic of ion implanted metallic surfaces inducing dropwise condensation of steam, Langmuir 26 (8) (2010) 5971-5975. https://doi.org/10.1021/la904293f
- S.C. Do, K. Kim, J.H. Jeong, The variation of hydrophobicity of aluminum alloy by nitrogen and argon ion implantation, Heat Mass Tran. 51 (4) (2015) 487-495. https://doi.org/10.1007/s00231-014-1424-z
- K. Kim, J.H. Jeong, Condensation mode transition and performance degradation effect on nitrogen ion implanted aluminum surfaces, Int. J. Heat Mass Tran. 125 (2018) 983-993. https://doi.org/10.1016/j.ijheatmasstransfer.2018.04.102
- S.J. Kline, F.A. McClintock, Describing uncertainties in single-sample experiments, Mech. Eng. 75 (1) (1953) 3-8.
- M.A. Kedzierski, J.L. Worthington, Design and machining of copper specimens with micro holes for accurate heat transfer measurement, Exp. Heat Tran. 6 (4) (1993) 329-344. https://doi.org/10.1080/08916159308946463
- H.B. Eral, D.J.C.M. tMannetje, J.M. Oh, Contact angle hysteresis: a review of fundamentals and applications, Colloid Polym. Sci. 291 (2) (2013) 247-260. https://doi.org/10.1007/s00396-012-2796-6
- S.S. Finnicum, J.W. Westwater, Dropwise vs filmwise condensation of steam on chromium, Int. J. Heat Mass Tran. 32 (8) (1989) 1541-1549. https://doi.org/10.1016/0017-9310(89)90075-6
- S.T. Park, R.H. Baney, Behavior of sputter-deposited alumina thin films under subcritical hydrothermal condition, in: 28th International Conference on Advanced Ceramics and Composites B: Ceramic Engineering and Science Proceeding, vol 25, 2008, pp. 429-434, 4.
Cited by
- Review of Micro-Nanoscale Surface Coatings Application for Sustaining Dropwise Condensation vol.9, pp.2, 2019, https://doi.org/10.3390/coatings9020117
- Adhesion energy per unit area various liquid droplets on PMMA, Parylene C and PPFC coated flat solid surfaces vol.33, pp.3, 2019, https://doi.org/10.1007/s12206-019-0246-9
- A Review of Research on Dropwise Condensation Heat Transfer vol.11, pp.4, 2019, https://doi.org/10.3390/app11041553
- Flow Condensation Heat Transfer Characteristics of Nanochannels with Nanopillars: A Molecular Dynamics Study vol.37, pp.50, 2019, https://doi.org/10.1021/acs.langmuir.1c02696
- Numerical investigation on entropy generation in the dropwise condensation inside an inclined pipe vol.51, pp.1, 2019, https://doi.org/10.1002/htj.22319