DOI QR코드

DOI QR Code

Dropwise condensation induced on chromium ion implanted aluminum surface

  • Kim, Kiwook (School of Mechanical Engineering, Pusan National University) ;
  • Lee, Youngjin (School of Mechanical Engineering, Pusan National University) ;
  • Jeong, Ji Hwan (School of Mechanical Engineering, Pusan National University)
  • Received : 2018.01.27
  • Accepted : 2018.09.26
  • Published : 2019.02.25

Abstract

Aluminum substrates are irradiated with chromium ions and the steam condensation heat transfer performance on these surfaces is examined. Filmwise condensation is induced on the surface of aluminum specimens irradiated with chromium ion dose of less than $10^{16}ions/cm^2$ while dropwise condensation occurs on the specimens irradiated with chromium ion dose of $5{\times}10^{16}ions/cm^2$ in the range of ion energy from 70 to 100 keV. The heat transfer coefficient of the surfaces on which dropwise condensation occurs appeared to be approximately twice as much as the prediction by Nusselt's film theory. In a durability test, dropwise condensation lasts over six months and the heat transfer coefficient is also maintained.

Keywords

References

  1. B.H. Shon, S.W. Jeon, Y. Kim, Y.T. Kang, Review: condensation and evaporation characteristics of low GWP refrigerants in plate heat exchanger, Int. J. Air Cond. Refrig. 24 (2) (2016), 1630004. https://doi.org/10.1142/S2010132516300044
  2. M.S. Mahmud, K. Kariya, A. Miyara, Local Condensation heat transfer characteristics of refrigerant R1234ze(E) flow inside a plate heat exchanger, Int. J. Air Cond. Refrig. 25 (1) (2017), 1750004. https://doi.org/10.1142/S2010132517500043
  3. J.W. Rose, Condensation heat transfer fundamentals, Chem. Eng. Res. Des. 76 (2) (1998) 143-152. https://doi.org/10.1205/026387698524712
  4. I.C. Bang, J.H. Jeong, Nanotechnology for advanced nuclear thermal-hydraulics and safety: boiling and condensation, Nucl. Eng. Technol. 43 (3) (2011) 217-242. https://doi.org/10.5516/NET.2011.43.3.217
  5. P.-Q. Vu, K.-I. Choi, J.T. Oh, H. Cho, An experimental investigation of condensation heat transfer coefficients and pressure drops of refrigerants inside multiport mini-channel tubes, Int. J. Air Cond. Refrig. 25 (2) (2017), 1750013. https://doi.org/10.1142/S2010132517500134
  6. G. Koch, D.C. Zhang, A. Leipertz, Condensation of steam on the surface of hard coated copper disc, Heat Mass Tran. 32 (1997) 149-156. https://doi.org/10.1007/s002310050105
  7. G. Pang, D. Dale, D.Y. Kwok, An integrated study of dropwise condensation heat transfer on self-assembled organic surfaces through Fourier transform infra-red spectroscopy and ellipsometry, Int. J. Heat Mass Tran. 48 (2) (2005) 307-316. https://doi.org/10.1016/j.ijheatmasstransfer.2004.08.029
  8. X. Ma, J. Chen, D. Xu, J. Lin, C. Ren, Z. Long, Influence of processing conditions of polymer film on dropwise condensation heat transfer, Int. J. Heat Mass Tran. 45 (16) (2002) 3405-3411. https://doi.org/10.1016/S0017-9310(02)00059-5
  9. S. Vemuri, K.J. Kim, B.D. Wood, S. Govindaraju, T.W. Bell, Long term testing for dropwise condensation using self-assembled monolayer coatings of n-octadecyl mercaptan, Appl. Therm. Eng. 26 (4) (2006) 421-429. https://doi.org/10.1016/j.applthermaleng.2005.05.022
  10. C. Dietz, K. Rykaczewski, A.G. Fedorov, Y. Joshi, Visualizationa of droplet departure on a superhydrophobic surface and implications to heat transfer enhancement during dropwise condensation, Appl. Phys. Lett. 97 (2010) 033104. https://doi.org/10.1063/1.3460275
  11. K. Kim, S.C. Do, J.S. Ko, J.H. Jeong, Observation of water condensate on hydrophobic micro textured surfaces, Heat Mass Tran. 49 (2013) 955-962. https://doi.org/10.1007/s00231-013-1141-z
  12. C. Hao, Y. Liu, X. Chen, J. Li, M. Zhang, Y. Zhao, Z. Wang, Bioinspired interfacial materials with enhanced drop mobility: from fundamentals to multifunctional applications, Small 12 (14) (2016) 1825-1839. https://doi.org/10.1002/smll.201503060
  13. R.A. Erb, Wettability of metals under continuous condensing conditions, J. Phys. Chem. 69 (4) (1965) 1306-1309. https://doi.org/10.1021/j100888a035
  14. G.A. O'Neil, J.W.Westwater, Dropwise condensation of steam on electroplated silver surfaces, Int. J. Heat Mass Tran. 27 (9) (1984) 1539-1549. https://doi.org/10.1016/0017-9310(84)90266-7
  15. D. Attinger, C. Frankiewicz, A.R. Betz, T.M. Schutzius, R. Ganguly, A. Das, C. Kim, C.M. Megaridis, Surface engineering for phase change heat transfer: a review, MRS Energy Sustain. 1 (2014). E4. https://doi.org/10.1557/mre.2014.9
  16. A.T. Paxson, J.L. Yague, K.K. Gleason, K.K. Varanasi, Stable dropwise condensation for enhancing heat transfer via the initiated chemical vapor deposition (iCVD) of grafted polymer films, Adv. Mater. 26 (3) (2014) 418-423. https://doi.org/10.1002/adma.201303065
  17. D.J. Preston, D.L. Mafra, N. Miljkovic, J. Kong, E.N. Wang, Scalable graphene coatings for enhanced condensation heat transfer, Nano Lett. 15 (5) (2015) 2902-2909. https://doi.org/10.1021/nl504628s
  18. G.S. Was, Ion beam modification of metals: compositional and microstructural changes, Prog. Surf. Sci. 32 (3-4) (1989) 211-332. https://doi.org/10.1016/0079-6816(89)90005-1
  19. Q. Zhao, D. Zhang, J. Lin, A study of surface materials achieving dropwise condensation, in: Proceedings of the First International Conference on Heat Transfer in Energy Conservation, Shenyang, vol. 1, 1988, pp. 177-179.
  20. M.H. Rausch, A.P. Froba, A. Leipertz, Dropwise condensation heat transfer on ion implanted aluminum surfaces, Int. J. Heat Mass Tran. 51 (5-6) (2008) 1061-1070. https://doi.org/10.1016/j.ijheatmasstransfer.2006.05.047
  21. M.H. Rausch, A. Leipertz, A.P. Froba, On the characteristic of ion implanted metallic surfaces inducing dropwise condensation of steam, Langmuir 26 (8) (2010) 5971-5975. https://doi.org/10.1021/la904293f
  22. S.C. Do, K. Kim, J.H. Jeong, The variation of hydrophobicity of aluminum alloy by nitrogen and argon ion implantation, Heat Mass Tran. 51 (4) (2015) 487-495. https://doi.org/10.1007/s00231-014-1424-z
  23. K. Kim, J.H. Jeong, Condensation mode transition and performance degradation effect on nitrogen ion implanted aluminum surfaces, Int. J. Heat Mass Tran. 125 (2018) 983-993. https://doi.org/10.1016/j.ijheatmasstransfer.2018.04.102
  24. S.J. Kline, F.A. McClintock, Describing uncertainties in single-sample experiments, Mech. Eng. 75 (1) (1953) 3-8.
  25. M.A. Kedzierski, J.L. Worthington, Design and machining of copper specimens with micro holes for accurate heat transfer measurement, Exp. Heat Tran. 6 (4) (1993) 329-344. https://doi.org/10.1080/08916159308946463
  26. H.B. Eral, D.J.C.M. tMannetje, J.M. Oh, Contact angle hysteresis: a review of fundamentals and applications, Colloid Polym. Sci. 291 (2) (2013) 247-260. https://doi.org/10.1007/s00396-012-2796-6
  27. S.S. Finnicum, J.W. Westwater, Dropwise vs filmwise condensation of steam on chromium, Int. J. Heat Mass Tran. 32 (8) (1989) 1541-1549. https://doi.org/10.1016/0017-9310(89)90075-6
  28. S.T. Park, R.H. Baney, Behavior of sputter-deposited alumina thin films under subcritical hydrothermal condition, in: 28th International Conference on Advanced Ceramics and Composites B: Ceramic Engineering and Science Proceeding, vol 25, 2008, pp. 429-434, 4.

Cited by

  1. Review of Micro-Nanoscale Surface Coatings Application for Sustaining Dropwise Condensation vol.9, pp.2, 2019, https://doi.org/10.3390/coatings9020117
  2. Adhesion energy per unit area various liquid droplets on PMMA, Parylene C and PPFC coated flat solid surfaces vol.33, pp.3, 2019, https://doi.org/10.1007/s12206-019-0246-9
  3. A Review of Research on Dropwise Condensation Heat Transfer vol.11, pp.4, 2019, https://doi.org/10.3390/app11041553
  4. Flow Condensation Heat Transfer Characteristics of Nanochannels with Nanopillars: A Molecular Dynamics Study vol.37, pp.50, 2019, https://doi.org/10.1021/acs.langmuir.1c02696
  5. Numerical investigation on entropy generation in the dropwise condensation inside an inclined pipe vol.51, pp.1, 2019, https://doi.org/10.1002/htj.22319