DOI QR코드

DOI QR Code

Neutronic analysis of fuel assembly design in Small-PWR using uranium mononitride fully ceramic micro-encapsulated fuel using SCALE and Serpent codes

  • Hakim, Arief Rahman (Department of Nuclear Engineering and Engineering Physics, Faculty of Engineering, Universitas Gadjah Mada) ;
  • Harto, Andang Widi (Department of Nuclear Engineering and Engineering Physics, Faculty of Engineering, Universitas Gadjah Mada) ;
  • Agung, Alexander (Department of Nuclear Engineering and Engineering Physics, Faculty of Engineering, Universitas Gadjah Mada)
  • Received : 2017.10.28
  • Accepted : 2018.08.10
  • Published : 2019.02.25

Abstract

One of proposed Accident Tolerant Fuel (ATF) concept is fully ceramic micro-encapsulated fuel (FCMF). FCMF using uranium mononitride (UN) has better safety aspects than $UO_2$ pellet fuel although it might not have a better neutronic performance due to the presence of matrix and high neutron-induced interaction of $^{14}N$. Before implementing UN-FCMF technology in Small-PWR, further research must be taken place to make sure the proposed design of fuel assembly has inherent safety features and maintain the fuel performance. This study focusses on the neutronic analysis of UN-FCMF based fuel assembly using Serpent and SCALE codes. It is shown in the proposed fuel assembly design has inherent safety features with respect to the fuel temperature reactivity coefficient, void reactivity coefficient, and moderator temperature reactivity coefficient. It is noted that the use of FCMF leads to a lower ratio of burnup to $^{235}U$ enrichment ratio compared to the $UO_2/Zr$ fuel.

Keywords

References

  1. J.H. Harding, D.G. Martin, A recommendation for the thermal conductivity of UO2, J. Nucl. Mater. 166 (3) (Aug. 1989) 223-226. https://doi.org/10.1016/0022-3115(89)90218-3
  2. L.J. Ott, K.R. Robb, D. Wang, Preliminary assessment of accident-tolerant fuels on LWR performance during normal operation and under DB and BDB accident conditions, J. Nucl. Mater. 448 (1) (2014) 520-533. https://doi.org/10.1016/j.jnucmat.2013.09.052
  3. J.H. Yang, D.J. Kim, K.S. Kim, Y.H. Koo, $UO_2$-UN composites with enhanced uranium density and thermal conductivity, J. Nucl. Mater. 465 (2015) 509-515. https://doi.org/10.1016/j.jnucmat.2015.06.039
  4. N.R. Brown, A. Aronson, M. Todosow, R. Brito, K.J. McClellan, Neutronic performance of uranium nitride composite fuels in a PWR, Nucl. Eng. Des. 275 (Aug. 2014) 393-407. https://doi.org/10.1016/j.nucengdes.2014.04.040
  5. N.R. Brown, M. Todosow, A. Cuadra, Screening of advanced cladding materials and UN-U3Si5 fuel, J. Nucl. Mater. 462 (December) (2014), 26-42, 2015.
  6. K.A. Terrani, L.L. Snead, J.C. Gehin, Microencapsulated fuel technology for commercial light water and advanced reactor application, J. Nucl. Mater. 427 (1-3) (2012) 209-224. https://doi.org/10.1016/j.jnucmat.2012.05.021
  7. K.A. Terrani, J.O. Kiggans, L.L. Snead, Fabrication and preliminary evaluation of metal matrix microencapsulated fuels, J. Nucl. Mater. 427 (1-3) (Aug. 2012) 79-86. https://doi.org/10.1016/j.jnucmat.2012.04.010
  8. R.N. Morris, P.J. Pappano, Estimation of maximum coated particle fuel compact packing fraction, J. Nucl. Mater. 361 (1) (2007) 18-29. https://doi.org/10.1016/j.jnucmat.2006.10.017
  9. B.T. Rearden, et al., Monte Carlo capabilities of the SCALE code system, Ann. Nucl. Energy 82 (2015) 130-141. https://doi.org/10.1016/j.anucene.2014.08.019
  10. N.R. Brown, H. Ludewig, A. Aronson, G. Raitses, M. Todosow, Neutronic evaluation of a PWR with fully ceramic microencapsulated fuel. Part I: lattice benchmarking, cycle length, and reactivity coefficients, Ann. Nucl. Energy 62 (Dec. 2013) 538-547. https://doi.org/10.1016/j.anucene.2013.05.025
  11. J. Leppanen, M. Pusa, T. Viitanen, V. Valtavirta, T. Kaltiaisenaho, The Serpent Monte Carlo code: status, development and applications in 2013, Ann. Nucl. Energy 82 (2015) 142-150. https://doi.org/10.1016/j.anucene.2014.08.024
  12. M. Nagai, Y. Shimazu, Small PWRs using coated particle for district heating, PFPWR50, Prog. Nucl. Energy 47 (2005) 155-162. https://doi.org/10.1016/j.pnucene.2005.05.015
  13. A. Hussain, C. Xinrong, Small PWR core design with coated particle based fuel with a novel composition, Prog. Nucl. Energy 52 (6) (2010) 531-535. https://doi.org/10.1016/j.pnucene.2010.02.003
  14. X. Dai, X. Cao, S. Yu, C. Zhu, Conceptual core design of an innovative small PWR utilizing fully ceramic microencapsulated fuel, Prog. Nucl. Energy 75 (2014) 63-71. https://doi.org/10.1016/j.pnucene.2014.04.010
  15. A. Talamo, A novel concept of QUADRISO particles. Part II: utilization for excess reactivity control, Nucl. Eng. Des. 240 (7) (2010) 1919-1927. https://doi.org/10.1016/j.nucengdes.2010.03.025
  16. A. Talamo, M.A. Pouchon, F. Venneri, Alternative configurations for the QUADRISO fuel design concept, J. Nucl. Mater. 383 (2009) 264-266. https://doi.org/10.1016/j.jnucmat.2008.09.010