References
- Terheyden H, Lang NP, Bierbaum S, Stadlinger B. Osseointegration--communication of cells. Clin Oral Implants Res 2012;23:1127-35. https://doi.org/10.1111/j.1600-0501.2011.02327.x
- Tomisa AP, Launey ME, Lee JS, Mankani MH, Wegst UG, Saiz E. Nanotechnology approaches to improve dental implants. Int J Oral Maxillofac Implants 2011;26 Suppl:25-44.
- Aljateeli M, Wang HL. Implant microdesigns and their impact on osseointegration. Implant Dent 2013;22:127-32. https://doi.org/10.1097/ID.0b013e318278a90b
- Swetha M, Sahithi K, Moorthi A, Srinivasan N, Ramasamy K, Selvamurugan N. Biocomposites containing natural polymers and hydroxyapatite for bone tissue engineering. Int J Biol Macromol 2010;47:1-4. https://doi.org/10.1016/j.ijbiomac.2010.03.015
- Ong JL, Chan DC. Hydroxyapatite and their use as coatings in dental implants: a review. Crit Rev Biomed Eng 2000;28:667-707.
- Whitehead RY, Lucas LC, Lacefield WR. The effect of dissolution on plasma sprayed hydroxylapatite coatings on titanium. Clin Mater 1993;12:31-9. https://doi.org/10.1016/0267-6605(93)90025-3
- Wheeler SL. Eight-year clinical retrospective study of titanium plasma-sprayed and hydroxyapatite-coated cylinder implants. Int J Oral Maxillofac Implants 1996;11:340-50.
- Thierer T, Davliakos JP, Keith JD Jr, Sanders JJ, Tarnow DP, Rivers JA. Five-year prospective clinical evaluation of highly crystalline HA MP-1-coated dental implants. J Oral Implantol 2008;34:39-46. https://doi.org/10.1563/1548-1336(2008)34[39:FPCEOH]2.0.CO;2
- Artzi Z, Carmeli G, Kozlovsky A. A distinguishable observation between survival and success rate outcome of hydroxyapatite-coated implants in 5-10 years in function. Clin Oral Implants Res 2006;17:85-93. https://doi.org/10.1111/j.1600-0501.2005.01178.x
- Rupp F, Scheideler L, Olshanska N, de Wild M, Wieland M, Geis-Gerstorfer J. Enhancing surface free energy and hydrophilicity through chemical modification of microstructured titanium implant surfaces. J Biomed Mater Res A 2006;76:323-34.
- Buser D, Broggini N, Wieland M, Schenk RK, Denzer AJ, Cochran DL, et al. Enhanced bone apposition to a chemically modified SLA titanium surface. J Dent Res 2004;83:529-33. https://doi.org/10.1177/154405910408300704
- Qu Z, Rausch-Fan X, Wieland M, Matejka M, Schedle A. The initial attachment and subsequent behavior regulation of osteoblasts by dental implant surface modification. J Biomed Mater Res A 2007;82:658-68.
- Lai HC, Zhuang LF, Liu X, Wieland M, Zhang ZY, Zhang ZY. The influence of surface energy on early adherent events of osteoblast on titanium substrates. J Biomed Mater Res A 2010;93:289-96.
- Lang NP, Salvi GE, Huynh-Ba G, Ivanovski S, Donos N, Bosshardt DD. Early osseointegration to hydrophilic and hydrophobic implant surfaces in humans. Clin Oral Implants Res 2011;22:349-56. https://doi.org/10.1111/j.1600-0501.2011.02172.x
- Calciolari E, Mardas N, Dereka X, Anagnostopoulos AK, Tsangaris GT, Donos N. Protein expression during early stages of bone regeneration under hydrophobic and hydrophilic titanium domes. A pilot study. J Periodontal Res 2018;53:174-87. https://doi.org/10.1111/jre.12498
- Matsuo K, Irie N. Osteoclast-osteoblast communication. Arch Biochem Biophys 2008;473:201-9. https://doi.org/10.1016/j.abb.2008.03.027
- Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol 2010;8:e1000412. https://doi.org/10.1371/journal.pbio.1000412
-
Vlacic-Zischke J, Hamlet SM, Friis T, Tonetti MS, Ivanovski S. The influence of surface microroughness and hydrophilicity of titanium on the up-regulation of
$TGF{\beta}/BMP$ signalling in osteoblasts. Biomaterials 2011;32:665-71. https://doi.org/10.1016/j.biomaterials.2010.09.025 - Donath K, Breuner G. A method for the study of undecalcified bones and teeth with attached soft tissues. The Sage-Schliff (sawing and grinding) technique. J Oral Pathol 1982;11:318-26. https://doi.org/10.1111/j.1600-0714.1982.tb00172.x
- Dempster DW, Compston JE, Drezner MK, Glorieux FH, Kanis JA, Malluche H, et al. Standardized nomenclature, symbols, and units for bone histomorphometry: a 2012 update of the report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 2013;28:2-17. https://doi.org/10.1002/jbmr.1805
- Sato M, Aslani A, Sambito MA, Kalkhoran NM, Slamovich EB, Webster TJ. Nanocrystalline hydroxyapatite/titania coatings on titanium improves osteoblast adhesion. J Biomed Mater Res A 2008;84:265-72.
- Sohn SH, Jun HK, Kim CS, Kim KN, Chung SM, Shin SW, et al. Biological responses in osteoblast-like cell line according to thin layer hydroxyapatite coatings on anodized titanium. J Oral Rehabil 2006;33:898-911. https://doi.org/10.1111/j.1365-2842.2006.01643.x
- Oates TW, Valderrama P, Bischof M, Nedir R, Jones A, Simpson J, et al. Enhanced implant stability with a chemically modified SLA surface: a randomized pilot study. Int J Oral Maxillofac Implants 2007;22:755-60.
- Stadlinger B, Lode AT, Eckelt U, Range U, Schlottig F, Hefti T, et al. Surface-conditioned dental implants: an animal study on bone formation. J Clin Periodontol 2009;36:882-91. https://doi.org/10.1111/j.1600-051X.2009.01466.x
- Schenk RK, Buser D. Osseointegration: a reality. Periodontol 2000 1998;17:22-35. https://doi.org/10.1111/j.1600-0757.1998.tb00120.x
- Futami T, Fujii N, Ohnishi H, Taguchi N, Kusakari H, Ohshima H, et al. Tissue response to titanium implants in the rat maxilla: ultrastructural and histochemical observations of the bone-titanium interface. J Periodontol 2000;71:287-98. https://doi.org/10.1902/jop.2000.71.2.287
- Haider R, Watzek G, Plenk H. Effects of drill cooling and bone structure on IMZ implant fixation. Int J Oral Maxillofac Implants 1993;8:83-91.
- Buser D, Schenk RK, Steinemann S, Fiorellini JP, Fox CH, Stich H. Influence of surface characteristics on bone integration of titanium implants. A histomorphometric study in miniature pigs. J Biomed Mater Res 1991;25:889-902. https://doi.org/10.1002/jbm.820250708
- Ong JL, Carnes DL, Bessho K. Evaluation of titanium plasma-sprayed and plasma-sprayed hydroxyapatite implants in vivo. Biomaterials 2004;25:4601-6. https://doi.org/10.1016/j.biomaterials.2003.11.053
- Park YS, Yi KY, Lee IS, Han CH, Jung YC. The effects of ion beam-assisted deposition of hydroxyapatite on the grit-blasted surface of endosseous implants in rabbit tibiae. Int J Oral Maxillofac Implants 2005;20:31-8.
- Orsini G, Piattelli M, Scarano A, Petrone G, Kenealy J, Piattelli A, et al. Randomized, controlled histologic and histomorphometric evaluation of implants with nanometer-scale calcium phosphate added to the dual acid-etched surface in the human posterior maxilla. J Periodontol 2007;78:209-18. https://doi.org/10.1902/jop.2007.060297
- Mendes VC, Moineddin R, Davies JE. The effect of discrete calcium phosphate nanocrystals on bone-bonding to titanium surfaces. Biomaterials 2007;28:4748-55. https://doi.org/10.1016/j.biomaterials.2007.07.020
Cited by
- Can the Macrogeometry of Dental Implants Influence Guided Bone Regeneration in Buccal Bone Defects? Histomorphometric and Biomechanical Analysis in Beagle Dogs vol.8, pp.5, 2019, https://doi.org/10.3390/jcm8050618
- Bioactive Surfaces vs. Conventional Surfaces in Titanium Dental Implants: A Comparative Systematic Review vol.9, pp.7, 2019, https://doi.org/10.3390/jcm9072047
- Early Loading of Mandibular Molar Single Implants: 1 Year Results of a Randomized Controlled Clinical Trial vol.13, pp.18, 2019, https://doi.org/10.3390/ma13183912
- Histologic and Histomorphometric Evaluation of a New Bioactive Liquid BBL on Implant Surface: A Preclinical Study in Foxhound Dogs vol.14, pp.20, 2019, https://doi.org/10.3390/ma14206217
- An Amorphous Peri‐Implant Ligament with Combined Osteointegration and Energy‐Dissipation vol.33, pp.45, 2019, https://doi.org/10.1002/adma.202103727
- The impact of surface treatment in 3-dimensional printed implants for early osseointegration: a comparison study of three different surfaces vol.11, pp.1, 2019, https://doi.org/10.1038/s41598-021-89961-3