DOI QR코드

DOI QR Code

Lung Ultrasonography Score as a Respiratory Parameter of Respiratory Distress Syndrome in Very Preterm Infants: A Single Center Experience

  • Sin, So Young (Department of Pediatrics, Keimyung University Dongsan Medical Center) ;
  • Park, Jae Hyun (Department of Pediatrics, Keimyung University Dongsan Medical Center) ;
  • Kim, Chun Soo (Department of Pediatrics, Keimyung University Dongsan Medical Center) ;
  • Lee, Sang Lak (Department of Pediatrics, Keimyung University Dongsan Medical Center)
  • Received : 2019.02.05
  • Accepted : 2019.05.23
  • Published : 2019.08.31

Abstract

Purpose: Comparison between lung ultrasound (LUS) score and indices of respiratory severity in very preterm infants born at 28 to 31 weeks' gestation. Methods: We retrospectively reviewed medical records of 32 very preterm infants born at 28 to 31 weeks' gestation at Keimyung University Dongsan Medical Center. Before surfactant administration, bedside LUS in the neonatal intensive care unit was recorded within the first hour of life. Partial pressure of capillary oxygen to fraction of inspired oxygen ratio (PcO2)/FiO2, alveolar-arterial gradient (A-aO2), modified oxygenation index (OI), and arterial to alveolar ratio were calculated. Correlation between LUS score and indices of respiratory severity were analyzed between the intubation and nasal continuous positive airway pressure (NCPAP) groups depending on the presence or absence of endotracheal intubation. Results: Mean LUS scores, A-aO2, and modified OI in the intubation group were significantly higher than those in the NCPAP group. Conversely, PcO2/FiO2 and arterial to alveolar ratios in the intubation group were significantly lower than those in the NCPAP group. LUS score was found to be significantly correlated with A-aO2 (r=0.448, P<0.05) and modified OI (r=0.453, P<0.05), but not with PcO2/FiO2 ratio (r=-0.205, P> 0.05) and arterial to alveolar ratio (r=-0.190, P>0.05). Conclusion: The LUS score is well correlated with indices of respiratory severity in very preterm infants born at 28 to 31 weeks' gestation. Further investigation is needed to use LUS as an alternative tool in infants with respiratory distress.

Keywords

References

  1. Committee on Fetus and Newborn; American Academy of Pediatrics. Respiratory support in preterm infants at birth. Pediatrics 2014;133:171-4. https://doi.org/10.1542/peds.2013-3442
  2. Iliodromiti Z, Zygouris D, Sifakis S, Pappa KI, Tsikouras P, Salakos N, et al. Acute lung injury in preterm fetuses and neonates: mechanisms and molecular pathways. J Matern Fetal Neonatal Med 2013;26:1696-704. https://doi.org/10.3109/14767058.2013.798284
  3. Morley CJ, Davis PG, Doyle LW, Brion LP, Hascoet JM, Carlin JB, et al. Nasal CPAP or intubation at birth for very preterm infants. N Engl J Med 2008;358:700-8. https://doi.org/10.1056/NEJMoa072788
  4. SUPPORT Study Group of the Eunice Kennedy Shriver NICHD Neonatal Research Network, Finer NN , Carlo WA, Walsh MC, Rich W, Gantz MG, et al. Early CPAP versus surfactant in extremely preterm infants. N Engl J Med 2010;362:1970-9. https://doi.org/10.1056/NEJMoa0911783
  5. Dunn MS, Kaempf J, de Klerk A, de Klerk R, Reilly M, Howard D, et al. Randomized trial comparing 3 approaches to the initial respiratory management of preterm neonates. Pediatrics 2011;128:e1069-76. https://doi.org/10.1542/peds.2010-3848
  6. Rojas-Reyes MX, Morley CJ, Soll R. Prophylactic versus selective use of surfactant in preventing morbidity and mortality in preterm infants. Cochrane Database Syst Rev 2012;3:CD000510.
  7. Sweet DG, Carnielli V, Greisen G, Hallman M, Ozek E, Plavka R, et al. European consensus guidelines on the management of respiratory distress syndrome: 2016 Update. Neonatology 2017;111:107-25. https://doi.org/10.1159/000448985
  8. Isayama T, Chai-Adisaksopha C, McDonald SD. Noninvasive ventilation with vs without early surfactant to prevent chronic lung disease in preterm infants: a systematic review and meta-analysis. JAMA Pediatr 2015;169:731-9. https://doi.org/10.1001/jamapediatrics.2015.0510
  9. Volpicelli G, Elbarbary M, Blaivas M, Lichtenstein DA, Mathis G, Kirkpatrick AW, et al. International evidence-based recommendations for point-of-care lung ultrasound. Intensive Care Med 2012;38:577-91. https://doi.org/10.1007/s00134-012-2513-4
  10. Liu J. Lung ultrasonography for the diagnosis of neonatal lung disease. J Matern Fetal Neonatal Med 2014;27:856-61. https://doi.org/10.3109/14767058.2013.844125
  11. Copetti R, Cattarossi L, Macagno F, Violino M, Furlan R. Lung ultrasound in respiratory distress syndrome: a useful tool for early diagnosis. Neonatology 2008;94:52-9. https://doi.org/10.1159/000113059
  12. Copetti R, Cattarossi L. The 'double lung point': an ultrasound sign diagnostic of transient tachypnea of the newborn. Neonatology 2007;91:203-9. https://doi.org/10.1159/000097454
  13. Vergine M, Copetti R, Brusa G, Cattarossi L. Lung ultrasound accuracy in respiratory distress syndrome and transient tachypnea of the newborn. Neonatology 2014;106:87-93. https://doi.org/10.1159/000358227
  14. Brat R, Yousef N, Klifa R, Reynaud S, Shankar Aguilera S, De Luca D. Lung ultrasonography score to evaluate oxygenation and surfactant need in neonates treated with continuous positive airway pressure. JAMA Pediatr 2015;169:e151797. https://doi.org/10.1001/jamapediatrics.2015.1797
  15. Sin SY, Jin MJ, Lee NH, Park JH, Kim CS, Lee SL. Lung ultrasonography for the diagnosis of respiratory distress syndrome in late preterm infants: changing incidence: a single center experience. Neonatal Med 2017;24:13-9. https://doi.org/10.5385/nm.2017.24.1.13
  16. Kim TH, Choi MS, Chung SH, Choi YS, Bae CW. Morbidity of low birth weight infants in Korea (2012): a comparison with Japan and the USA. Neonatal Med 2014;21:218-23. https://doi.org/10.5385/nm.2014.21.4.218
  17. Wyckoff MH, Aziz K, Escobedo MB, Kapadia VS, Kattwinkel J, Perlman JM, et al. Part 13: neonatal resuscitation: 2015 American Heart Association guidelines update for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation 2015;132(18 Suppl 2):S543-60. https://doi.org/10.1161/CIR.0000000000000267
  18. Kim BI, Choi JH, Yun CK. Changes of respiratory indices and clinical response to the different modes of delivery for administration of surfactant replacement therapy in the respiratory distress syndrome. J Korean Soc Neonatol 1997;4:205-16.
  19. Jeon JH, Namgung R, Park MS, Park KI, Lee C. Oxygenation index as a respiratory parameter of respiratory distress syndrome in preterm infants. Korean J Pediatr 2008;51:145-9. https://doi.org/10.3345/kjp.2008.51.2.145
  20. Krummel TM, Greenfield LJ, Kirkpatrick BV, Mueller DG, Kerkering KW, Ormazabal M, et al. Alveolar-arterial oxygen gradients versus the neonatal pulmonary insufficiency index for prediction of mortality in ECMO candidates. J Pediatr Surg 1984;19:380-4. https://doi.org/10.1016/S0022-3468(84)80257-2
  21. Berry DD, Pramanik AK, Philips JB 3rd, Buchter DS, Kanarek KS, Easa D, et al. Comparison of the effect of three doses of a synthetic surfactant on the alveolar-arterial oxygen gradient in infants weighing > or = 1250 grams with respiratory distress syndrome. American Exosurf Neonatal Study Group II. J Pediatr 1994;124:294-301. https://doi.org/10.1016/S0022-3476(94)70323-X
  22. Bernard GR, Artigas A, Brigham KL, Carlet J, Falke K, Hudson L, et al. The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med 1994;149(3 Pt 1):818-24. https://doi.org/10.1164/ajrccm.149.3.7509706
  23. Narayanan A, Batra P, Faridi MMA, Harit D. PaO2/FiO2 ratio as predictor of mortality in neonates with meconium aspiration syndrome. Am J Perinatol 2019;36:609-14. https://doi.org/10.1055/s-0038-1672171
  24. Terek D, Gonulal D, Koroglu OA, Yalaz M, Akisu M, Kultursay N. Effects of two different exogenous surfactant preparations on serial peripheral perfusion index and tissue carbon monoxide measurements in preterm infants with severe respiratory distress syndrome. Pediatr Neonatol 2015;56:248-55. https://doi.org/10.1016/j.pedneo.2014.11.004
  25. Karadag N, Dilli D, Zenciroglu A, Aydin B, Beken S, Okumus N. Perfusion index variability in preterm infants treated with two different natural surfactants for respiratory distress syndrome. Am J Perinatol 2014;31:1015-22. https://doi.org/10.1055/s-0034-1370344
  26. Ray S, Rogers L, Pagel C, Raman S, Peters MJ, Ramnarayan P. PaO2/FIO2 ratio derived from the SpO2/FIO2 ratio to improve mortality prediction using the pediatric index of mortality-3 score in transported intensive care admissions. Pediatr Crit Care Med 2017;18:e131-6. https://doi.org/10.1097/PCC.0000000000001075
  27. Chida S, Fujiwara T, Konishi M, Takahashi H, Sasaki M. Stable microbubble test for predicting the risk of respiratory distress syndrome: II. Prospective evaluation of the test on amniotic fluid and gastric aspirate. Eur J Pediatr 1993;152:152-6. https://doi.org/10.1007/BF02072494
  28. Cho K, Matsuda T, Okajima S, Matsumoto Y, Sagawa T, Fujimoto S, et al. Prediction of respiratory distress syndrome by the level of pulmonary surfactant protein A in cord blood sera. Biol Neonate 2000;77:83-7. https://doi.org/10.1159/000014198
  29. Tsao PN, Wei SC, Chou HC, Su YN, Chen CY, Hsieh FJ, et al. Vascular endothelial growth factor in preterm infants with respiratory distress syndrome. Pediatr Pulmonol 2005;39:461-5. https://doi.org/10.1002/ppul.20205
  30. Lee IS, Cho YK, Kim A, Min WK, Kim KS, Mok JE. Lamellar body count in amniotic fluid as a rapid screening test for fetal lung maturity. J Perinatol 1996;16(3 Pt 1):176-80.
  31. Daniel IW, Fiori HH, Piva JP, Munhoz TP, Nectoux AV, Fiori RM. Lamellar body count and stable microbubble test on gastric aspirates from preterm infants for the diagnosis of respiratory distress syndrome. Neonatology 2010;98:150-5. https://doi.org/10.1159/000279887