DOI QR코드

DOI QR Code

Human Neural Stem Cells: Translational Research for Neonatal Hypoxic-Ischemic Brain Injury

  • Shin, Jeong Eun (Division of Neonatology, Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine) ;
  • Han, Jungho (Division of Neonatology, Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine) ;
  • Lim, Joo Hee (Division of Neonatology, Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine) ;
  • Eun, Ho Seon (Division of Neonatology, Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine) ;
  • Park, Kook In (Division of Neonatology, Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine)
  • Received : 2018.08.03
  • Accepted : 2018.11.29
  • Published : 2019.02.28

Abstract

Neonatal hypoxic-ischemic (HI) brain injury is a major cause of neonatal mortality and long-term neurodevelopmental disabilities. Although promising neuroprotective interventions have been studied, the current management of HI brain injury has been limited to supportive measures and induced hypothermia. In addition to engrafting, migrating toward the damage sites and differentiating into multiple lineages, multipotent neural stem/progenitor cells (NSPCs) also provide trophic/immunomodulatory factors and integrate into the host neurons upon implantation into an HI-injured brain. However, NSPC-based therapies have shown poor cell survival and integration, poor differentiation or restricted differentiation into the glial lineages. Furthermore, to achieve full functional recovery following brain injury, the optimization of cell therapy is needed to recapitulate the precise migration of stem cells to the region of interest and the neural rewiring present in the brain microenvironment. Therefore, the efficacy of NSPCs in the treatment of CNS injury is currently insufficient. Human NSPCs (hNSPCs) were isolated from the forebrain of an aborted fetus at 13 weeks of gestation with full parental consent and the approval of the Institutional Review Board of the Yonsei University College of Medicine. Here, to enhance the regenerative ability of hNSPCs in HI brain injury, cells were either pretreated with pharmacological agents or engineered to serve as vehicles for gene delivery. Furthermore, when combined with a poly (glycolic acid)-based synthetic scaffold, hNSPCs provide a more versatile treatment for neonatal HI brain injury. Finally, hNSPCs transfected with zinc-doped ferrite magnetic nanoparticles for controlling both cell migration and differentiation offer a simple and smart tool for cell-based therapies.

Keywords

Acknowledgement

이 논문에 서술된 연구들은 한국연구재단과 보건의료기술 연구개발사업 지원을 받아 수행되었습니다(NRF; 2013M3A9B4076545, HI14C1564, HI16C1089). 기술적 도움을 주신 연세-칼자이스 이미징센터에 감사 드립니다.

References

  1. Ferriero DM. Neonatal brain injury. N Engl J Med 2004;351:1985-95. https://doi.org/10.1056/NEJMra041996
  2. Volpe JJ. Neonatal encephalopathy: an inadequate term for hypoxic-ischemic encephalopathy. Ann Neurol 2012;72:156-66. https://doi.org/10.1002/ana.23647
  3. Douglas-Escobar M, Weiss MD. Hypoxic-ischemic encephalopathy: a review for the clinician. JAMA Pediatr 2015;169:397-403. https://doi.org/10.1001/jamapediatrics.2014.3269
  4. Conti L, Cattaneo E. Neural stem cell systems: physiological players or in vitro entities? Nat Rev Neurosci 2010;11:176-87. https://doi.org/10.1038/nrn2761
  5. McKay R. Stem cells in the central nervous system. Science 1997;276:66-71. https://doi.org/10.1126/science.276.5309.66
  6. Gage FH. Mammalian neural stem cells. Science 2000;287:1433-8. https://doi.org/10.1126/science.287.5457.1433
  7. Ourednik V, Ourednik J, Flax JD, Zawada WM, Hutt C, Yang C, et al. Segregation of human neural stem cells in the developing primate forebrain. Science 2001;293:1820-4. https://doi.org/10.1126/science.1060580
  8. Svendsen CN, ter Borg MG, Armstrong RJ, Rosser AE, Chandran S, Ostenfeld T, et al. A new method for the rapid and long term growth of human neural precursor cells. J Neurosci Methods 1998;85:141-52. https://doi.org/10.1016/S0165-0270(98)00126-5
  9. Vescovi AL, Parati EA, Gritti A, Poulin P, Ferrario M, Wanke E, et al. Isolation and cloning of multipotential stem cells from the embryonic human CNS and establishment of transplantable human neural stem cell lines by epigenetic stimulation. Exp Neurol 1999;156:71-83. https://doi.org/10.1006/exnr.1998.6998
  10. Palmer TD, Ray J, Gage FH. FGF-2-responsive neuronal progenitors reside in proliferative and quiescent regions of the adult rodent brain. Mol Cell Neurosci 1995;6:474-86. https://doi.org/10.1006/mcne.1995.1035
  11. Reynolds BA, Weiss S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 1992;255:1707-10. https://doi.org/10.1126/science.1553558
  12. Martino G, Pluchino S. The therapeutic potential of neural stem cells. Nat Rev Neurosci 2006;7:395-406. https://doi.org/10.1038/nrn1908
  13. Abematsu M, Tsujimura K, Yamano M, Saito M, Kohno K, Kohyama J, et al. Neurons derived from transplanted neural stem cells restore disrupted neuronal circuitry in a mouse model of spinal cord injury. J Clin Invest 2010;120:3255-66. https://doi.org/10.1172/JCI42957
  14. Kelly S, Bliss TM, Shah AK, Sun GH, Ma M, Foo WC, et al. Transplanted human fetal neural stem cells survive, migrate, and differentiate in ischemic rat cerebral cortex. Proc Natl Acad Sci U S A 2004;101:11839-44. https://doi.org/10.1073/pnas.0404474101
  15. Park KI, Teng YD, Snyder EY. The injured brain interacts reciprocally with neural stem cells supported by scaffolds to reconstitute lost tissue. Nat Biotechnol 2002;20:1111-7. https://doi.org/10.1038/nbt751
  16. Blurton-Jones M, Kitazawa M, Martinez-Coria H, Castello NA, Muller FJ, Loring JF, et al. Neural stem cells improve cognition via BDNF in a transgenic model of Alzheimer disease. Proc Natl Acad Sci U S A 2009;106:13594-9. https://doi.org/10.1073/pnas.0901402106
  17. Pluchino S, Zanotti L, Rossi B, Brambilla E, Ottoboni L, Salani G, et al. Neurosphere-derived multipotent precursors promote neuroprotection by an immunomodulatory mechanism. Nature 2005;436:266-71. https://doi.org/10.1038/nature03889
  18. Tamaki SJ, Jacobs Y, Dohse M, Capela A, Cooper JD, Reitsma M, et al. Neuroprotection of host cells by human central nervous system stem cells in a mouse model of infantile neuronal ceroid lipofuscinosis. Cell Stem Cell 2009;5:310-9. https://doi.org/10.1016/j.stem.2009.05.022
  19. Andres RH, Horie N, Slikker W, Keren-Gill H, Zhan K, Sun G, et al. Human neural stem cells enhance structural plasticity and axonal transport in the ischaemic brain. Brain 2011;134:1777-89. https://doi.org/10.1093/brain/awr094
  20. Gage FH, Temple S. Neural stem cells: generating and regenerating the brain. Neuron 2013;80:588-601. https://doi.org/10.1016/j.neuron.2013.10.037
  21. Daadi MM, Davis AS, Arac A, Li Z, Maag AL, Bhatnagar R, et al. Human neural stem cell grafts modify microglial response and enhance axonal sprouting in neonatal hypoxic-ischemic brain injury. Stroke 2010;41:516-23. https://doi.org/10.1161/strokeaha.109.573691
  22. Imitola J, Raddassi K, Park KI, Mueller FJ, Nieto M, Teng YD, et al. Directed migration of neural stem cells to sites of CNS injury by the stromal cell-derived factor 1alpha/CXC chemokine receptor 4 pathway. Proc Natl Acad Sci U S A 2004;101:18117-22. https://doi.org/10.1073/pnas.0408258102
  23. Park KI, Hack MA, Ourednik J, Yandava B, Flax JD, Stieg PE, et al. Acute injury directs the migration, proliferation, and differentiation of solid organ stem cells: evidence from the effect of hypoxia-ischemia in the CNS on clonal "reporter" neural stem cells. Exp Neurol 2006;199:156-78. https://doi.org/10.1016/j.expneurol.2006.04.002
  24. Park KI, Himes BT, Stieg PE, Tessler A, Fischer I, Snyder EY. Neural stem cells may be uniquely suited for combined gene therapy and cell replacement: evidence from engraftment of Neurotrophin-3-expressing stem cells in hypoxic-ischemic brain injury. Exp Neurol 2006;199:179-90. https://doi.org/10.1016/j.expneurol.2006.03.016
  25. Lindvall O, Kokaia Z. Stem cells in human neurodegenerative disorders: time for clinical translation? J Clin Invest 2010;120:29-40. https://doi.org/10.1172/JCI40543
  26. Barnabe-Heider F, Frisen J. Stem cells for spinal cord repair. Cell Stem Cell 2008;3:16-24. https://doi.org/10.1016/j.stem.2008.06.011
  27. Orive G, Anitua E, Pedraz JL, Emerich DF. Biomaterials for promoting brain protection, repair and regeneration. Nat Rev Neurosci 2009;10:682-92. https://doi.org/10.1038/nrn2685
  28. Hofstetter CP, Holmstrom NA, Lilja JA, Schweinhardt P, Hao J, Spenger C, et al. Allodynia limits the usefulness of intraspinal neural stem cell grafts: directed differentiation improves outcome. Nat Neurosci 2005;8:346-53. https://doi.org/10.1038/nn1405
  29. Hicks AU, Lappalainen RS, Narkilahti S, Suuronen R, Corbett D, Sivenius J, et al. Transplantation of human embryonic stem cell-derived neural precursor cells and enriched environment after cortical stroke in rats: cell survival and functional recovery. Eur J Neurosci 2009;29:562-74. https://doi.org/10.1111/j.1460-9568.2008.06599.x
  30. Nakagomi N, Nakagomi T, Kubo S, Nakano-Doi A, Saino O, Takata M, et al. Endothelial cells support survival, proliferation, and neuronal differentiation of transplanted adult ischemia-induced neural stem/progenitor cells after cerebral infarction. Stem Cells 2009;27:2185-95. https://doi.org/10.1002/stem.161
  31. Park KI, Goo K, Jung K, Kim M, Kim IS, Yun S, et al. Therapeutic application of neural stem cells for neonatal hypoxic-ischemic brain injury. Neonatal Med 2013;20:343-53. https://doi.org/10.5385/nm.2013.20.3.343
  32. Wilkinson G, Dennis D, Schuurmans C. Proneural genes in neocortical development. Neuroscience 2013;253:256-73. https://doi.org/10.1016/j.neuroscience.2013.08.029
  33. Serre A, Snyder EY, Mallet J, Buchet D. Overexpression of basic helix-loop-helix transcription factors enhances neuronal differentiation of fetal human neural progenitor cells in various ways. Stem Cells Dev 2012;21:539-53. https://doi.org/10.1089/scd.2011.0079
  34. Yi SH, Jo AY, Park CH, Koh HC, Park RH, Suh-Kim H, et al. Mash1 and neurogenin 2 enhance survival and differentiation of neural precursor cells after transplantation to rat brains via distinct modes of action. Mol Ther 2008;16:1873-82. https://doi.org/10.1038/mt.2008.189
  35. Lee IS, Koo KY, Jung K, Kim M, Kim IS, Hwang K, et al. Neurogenin-2-transduced human neural progenitor cells attenuate neonatal hypoxic-ischemic brain injury. Transl Res 2017;183:121-36. https://doi.org/10.1016/j.trsl.2016.12.010
  36. Hagberg H, Mallard C, Ferriero DM, Vannucci SJ, Levison SW, Vexler ZS, et al. The role of inflammation in perinatal brain injury. Nat Rev Neurol 2015;11:192-208. https://doi.org/10.1038/nrneurol.2015.13
  37. Banjara M, Ghosh C. Sterile neuro inflammation and strategies for therapeutic intervention. Int J Inflam 2017;2017:8385961.
  38. Pluchino S, Quattrini A, Brambilla E, Gritti A, Salani G, Dina G, et al. Injection of adult neurospheres induces recovery in a chronic model of multiple sclerosis. Nature 2003;422:688-94. https://doi.org/10.1038/nature01552
  39. Einstein O, Fainstein N, Vaknin I, Mizrachi-Kol R, Reihartz E, Grigoriadis N, et al. Neural precursors attenuate autoimmune encephalomyelitis by peripheral immunosuppression. Ann Neurol 2007;61:209-18. https://doi.org/10.1002/ana.21033
  40. Lee IS, Jung K, Kim IS, Lee H, Kim M, Yun S, et al. Human neural stem cells alleviate Alzheimer-like pathology in a mouse model. Mol Neurodegener 2015;10:38. https://doi.org/10.1186/s13024-015-0035-6
  41. Kwilasz AJ, Grace PM, Serbedzija P, Maier SF, Watkins LR. The therapeutic potential of interleukin-10 in neuroimmune diseases. Neuropharmacology 2015;96:55-69. https://doi.org/10.1016/j.neuropharm.2014.10.020
  42. de Bilbao F, Arsenijevic D, Moll T, Garcia-Gabay I, Vallet P, Langhans W, et al. In vivo over-expression of interleukin-10 increases resistance to focal brain ischemia in mice. J Neurochem 2009;110:12-22. https://doi.org/10.1111/j.1471-4159.2009.06098.x
  43. Ooboshi H, Ibayashi S, Shichita T, Kumai Y, Takada J, Ago T, et al. Postischemic gene transfer of interleukin-10 protects against both focal and global brain ischemia. Circulation 2005;111:913-9. https://doi.org/10.1161/01.CIR.0000155622.68580.DC
  44. Grilli M, Barbieri I, Basudev H, Brusa R, Casati C, Lozza G, et al. Interleukin-10 modulates neuronal threshold of vulnerability to ischaemic damage. Eur J Neurosci 2000;12:2265-72. https://doi.org/10.1046/j.1460-9568.2000.00090.x
  45. Vila N, Castillo J, Davalos A, Esteve A, Planas AM, Chamorro A. Levels of anti-inflammatory cytokines and neurological worsening in acute ischemic stroke. Stroke 2003;34:671-5. https://doi.org/10.1161/01.str.0000057976.53301.69
  46. Kettenmann H, Hanisch UK, Noda M, Verkhratsky A. Physiology of microglia. Physiol Rev 2011;91:461-553. https://doi.org/10.1152/physrev.00011.2010
  47. Block ML, Zecca L, Hong JS. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 2007;8:57-69. https://doi.org/10.1038/nrn2038
  48. Dheen ST, Kaur C, Ling EA. Microglial activation and its implications in the brain diseases. Curr Med Chem 2007;14:1189-97. https://doi.org/10.2174/092986707780597961
  49. Iadecola C, Anrather J. The immunology of stroke: from mechanisms to translation. Nat Med 2011;17:796-808. https://doi.org/10.1038/nm.2399
  50. Hanisch UK, Kettenmann H. Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 2007;10:1387-94. https://doi.org/10.1038/nn1997
  51. Kwon MJ, Kim J, Shin H, Jeong SR, Kang YM, Choi JY, et al. Contribution of macrophages to enhanced regenerative capacity of dorsal root ganglia sensory neurons by conditioning injury. J Neurosci 2013;33:15095-108. https://doi.org/10.1523/JNEUROSCI.0278-13.2013
  52. Miron VE, Boyd A, Zhao JW, Yuen TJ, Ruckh JM, Shadrach JL, et al. M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination. Nat Neurosci 2013;16:1211-8. https://doi.org/10.1038/nn.3469
  53. Thored P, Heldmann U, Gomes-Leal W, Gisler R, Darsalia V, Taneera J, et al. Long-term accumulation of microglia with pro-neurogenic phenotype concomitant with persistent neurogenesis in adult subventricular zone after stroke. Glia 2009;57:835-49. https://doi.org/10.1002/glia.20810
  54. Ekdahl CT, Claasen JH, Bonde S, Kokaia Z, Lindvall O. Inflammation is detrimental for neurogenesis in adult brain. Proc Natl Acad Sci U S A 2003;100:13632-7. https://doi.org/10.1073/pnas.2234031100
  55. Liu Z, Fan Y, Won SJ, Neumann M, Hu D, Zhou L, et al. Chronic treatment with minocycline preserves adult new neurons and reduces functional impairment after focal cerebral ischemia. Stroke 2007;38:146-52. https://doi.org/10.1161/01.STR.0000251791.64910.cd
  56. David S, Kroner A. Repertoire of microglial and macrophage responses after spinal cord injury. Nat Rev Neurosci 2011;12:388-99. https://doi.org/10.1038/nrn3053
  57. Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol 2008;8:958-69. https://doi.org/10.1038/nri2448
  58. Rosenblum S, Smith TN, Wang N, Chua JY, Westbroek E, Wang K, et al. BDNF pretreatment of human embryonic-derived neural stem cells improves cell survival and functional recovery after transplantation in hypoxic-ischemic stroke. Cell Transplant 2015;24:2449-61. https://doi.org/10.3727/096368914X679354
  59. Hallenbeck JM. The many faces of tumor necrosis factor in stroke. Nat Med 2002;8:1363-8. https://doi.org/10.1038/nm1202-1363
  60. Liu H, Honmou O, Harada K, Nakamura K, Houkin K, Hamada H, et al. Neuroprotection by PlGF gene-modified human mesenchymal stem cells after cerebral ischaemia. Brain 2006;129:2734-45. https://doi.org/10.1093/brain/awl207
  61. Lee HJ, Kim MK, Kim HJ, Kim SU. Human neural stem cells genetically modified to overexpress Akt1 provide neuroprotection and functional improvement in mouse stroke model. PLoS One 2009;4:e5586. https://doi.org/10.1371/journal.pone.0005586
  62. Sakata H, Niizuma K, Wakai T, Narasimhan P, Maier CM, Chan PH. Neural stem cells genetically modified to overexpress cu/zn-superoxide dismutase enhance amelioration of ischemic stroke in mice. Stroke 2012;43:2423-9. https://doi.org/10.1161/strokeaha.112.656900
  63. Wang F, Kameda M, Yasuhara T, Tajiri N, Kikuchi Y, Liang HB, et al. GDNF-pretreatment enhances the survival of neural stem cells following transplantation in a rat model of Parkinson's disease. Neurosci Res 2011;71:92-8. https://doi.org/10.1016/j.neures.2011.05.019
  64. Sakata H, Narasimhan P, Niizuma K, Maier CM, Wakai T, Chan PH. Interleukin 6-preconditioned neural stem cells reduce ischaemic injury in stroke mice. Brain 2012;135:3298-310. https://doi.org/10.1093/brain/aws259
  65. Schwabe RF, Brenner DA. Mechanisms of liver injury. I. TNF-alpha-induced liver injury: role of IKK, JNK, and ROS pathways. Am J Physiol Gastrointest Liver Physiol 2006;290:G583-9. https://doi.org/10.1152/ajpgi.00422.2005
  66. Turrin NP, Rivest S. Tumor necrosis factor alpha but not interleukin 1 beta mediates neuroprotection in response to acute nitric oxide excitotoxicity. J Neurosci 2006;26:143-51. https://doi.org/10.1523/JNEUROSCI.4032-05.2006
  67. Bernardino L, Agasse F, Silva B, Ferreira R, Grade S, Malva JO. Tumor necrosis factor-alpha modulates survival, proliferation, and neuronal differentiation in neonatal subventricular zone cell cultures. Stem Cells 2008;26:2361-71. https://doi.org/10.1634/stemcells.2007-0914
  68. Peng H, Whitney N, Wu Y, Tian C, Dou H, Zhou Y, et al. HIV-1-infected and/or immune-activated macrophage-secreted TNF-alpha affects human fetal cortical neural progenitor cell proliferation and differentiation. Glia 2008;56:903-16. https://doi.org/10.1002/glia.20665
  69. Lan X, Chen Q, Wang Y, Jia B, Sun L, Zheng J, et al. TNF-α affects human cortical neural progenitor cell differentiation through the autocrine secretion of leukemia inhibitory factor. PLoS One 2012;7:e50783. https://doi.org/10.1371/journal.pone.0050783
  70. Cuschieri J, Maier RV. Mitogen-activated protein kinase (MAPK). Crit Care Med 2005;33:S417-9. https://doi.org/10.1097/01.CCM.0000191714.39495.A6
  71. Kim M, Jung K, Kim IS, Lee IS, Ko Y, Shin JE, et al. TNF-α induces human neural progenitor cell survival after oxygen-glucose deprivation by activating the NF-κB pathway. Exp Mol Med 2018;50:14.
  72. Garcia GE, Xia Y, Chen S, Wang Y, Ye RD, Harrison JK, et al. NF-kappaB-dependent fractalkine induction in rat aortic endothelial cells stimulated by IL-1beta, TNF-alpha, and LPS. J Leukoc Biol 2000;67:577-84. https://doi.org/10.1002/jlb.67.4.577
  73. Fraticelli P, Sironi M, Bianchi G, D'Ambrosio D, Albanesi C, Stoppacciaro A, et al. Fractalkine (CX3CL1) as an amplification circuit of polarized Th1 responses. J Clin Invest 2001;107:1173-81. https://doi.org/10.1172/JCI11517
  74. Zujovic V, Benavides J, Vige X, Carter C, Taupin V. Fractalkine modulates TNF-alpha secretion and neurotoxicity induced by microglial activation. Glia 2000;29:305-15. https://doi.org/10.1002/(SICI)1098-1136(20000215)29:4<305::AID-GLIA2>3.0.CO;2-V
  75. Cardona AE, Pioro EP, Sasse ME, Kostenko V, Cardona SM, Dijkstra IM, et al. Control of microglial neurotoxicity by the fractalkine receptor. Nat Neurosci 2006;9:917-24. https://doi.org/10.1038/nn1715
  76. Teng YD, Lavik EB, Qu X, Park KI, Ourednik J, Zurakowski D, et al. Functional recovery following traumatic spinal cord injury mediated by a unique polymer scaffold seeded with neural stem cells. Proc Natl Acad Sci U S A 2002;99:3024-9. https://doi.org/10.1073/pnas.052678899
  77. Lee S, Yun S, Park KI, Jang JH. Sliding fibers: slidable, injectable, and gel-like electrospun nanofibers as versatile cell carriers. ACS Nano 2016;10:3282-94. https://doi.org/10.1021/acsnano.5b06605
  78. Skop NB, Calderon F, Cho CH, Gandhi CD, Levison SW. Improvements in biomaterial matrices for neural precursor cell transplantation. Mol Cell Ther 2014;2:19. https://doi.org/10.1186/2052-8426-2-19
  79. Silver J, Miller JH. Regeneration beyond the glial scar. Nat Rev Neurosci 2004;5:146-56. https://doi.org/10.1038/nrn1326
  80. Fitch MT, Doller C, Combs CK, Landreth GE, Silver J. Cellular and molecular mechanisms of glial scarring and progressive cavitation: in vivo and in vitro analysis of inflammation-induced secondary injury after CNS trauma. J Neurosci 1999;19:8182-98. https://doi.org/10.1523/jneurosci.19-19-08182.1999
  81. Stone BS, Zhang J, Mack DW, Mori S, Martin LJ, Northington FJ. Delayed neural network degeneration after neonatal hypoxia-ischemia. Ann Neurol 2008;64:535-46. https://doi.org/10.1002/ana.21517
  82. Barrett RD, Bennet L, Davidson J, Dean JM, George S, Emerald BS, et al. Destruction and reconstruction: hypoxia and the developing brain. Birth Defects Res C Embryo Today 2007;81:163-76. https://doi.org/10.1002/bdrc.20095
  83. Huang YC, Huang YY. Biomaterials and strategies for nerve regeneration. Artif Organs 2006;30:514-22. https://doi.org/10.1111/j.1525-1594.2006.00253.x
  84. Lu P, Wang Y, Graham L, McHale K, Gao M, Wu D, et al. Long-distance growth and connectivity of neural stem cells after severe spinal cord injury. Cell 2012;150:1264-73. https://doi.org/10.1016/j.cell.2012.08.020
  85. Zeng X, Zeng YS, Ma YH, Lu LY, Du BL, Zhang W, et al. Bone marrow mesenchymal stem cells in a three-dimensional gelatin sponge scaffold attenuate inflammation, promote angiogenesis, and reduce cavity formation in experimental spinal cord injury. Cell Transplant 2011;20:1881-99. https://doi.org/10.3727/096368911X566181
  86. Olson HE, Rooney GE, Gross L, Nesbitt JJ, Galvin KE, Knight A, et al. Neural stem cell- and Schwann cell-loaded biodegradable polymer scaffolds support axonal regeneration in the transected spinal cord. Tissue Eng Part A 2009;15:1797-805. https://doi.org/10.1089/ten.tea.2008.0364
  87. Cholas RH, Hsu HP, Spector M. The reparative response to cross-linked collagen-based scaffolds in a rat spinal cord gap model. Biomaterials 2012;33:2050-9. https://doi.org/10.1016/j.biomaterials.2011.11.028
  88. Hejcl A, Sedy J, Kapcalova M, Toro DA, Amemori T, Lesy P, et al. HPMA-RGD hydrogels seeded with mesenchymal stem cells improve functional outcome in chronic spinal cord injury. Stem Cells Dev 2010;19:1535-46. https://doi.org/10.1089/scd.2009.0378
  89. Lee KY, Kong HJ, Mooney DJ. Quantifying interactions between cell receptors and adhesion ligand-modified polymers in solution. Macromol Biosci 2008;8:140-5. https://doi.org/10.1002/mabi.200700169
  90. Karp JM, Leng Teo GS. Mesenchymal stem cell homing: the devil is in the details. Cell Stem Cell 2009;4:206-16. https://doi.org/10.1016/j.stem.2009.02.001
  91. Cheng Z, Ou L, Zhou X, Li F, Jia X, Zhang Y, et al. Targeted migration of mesenchymal stem cells modified with CXCR4 gene to infarcted myocardium improves cardiac performance. Mol Ther 2008;16:571-9. https://doi.org/10.1038/sj.mt.6300374
  92. Rosova I, Dao M, Capoccia B, Link D, Nolta JA. Hypoxic preconditioning results in increased motility and improved therapeutic potential of human mesenchymal stem cells. Stem Cells 2008;26:2173-82. https://doi.org/10.1634/stemcells.2007-1104
  93. Barbash IM, Chouraqui P, Baron J, Feinberg MS, Etzion S, Tessone A, et al. Systemic delivery of bone marrow-derived mesenchymal stem cells to the infarcted myocardium: feasibility, cell migration, and body distribution. Circulation 2003;108:863-8. https://doi.org/10.1161/01.CIR.0000084828.50310.6A
  94. Purcell BP, Elser JA, Mu A, Margulies KB, Burdick JA. Synergistic effects of SDF-1α chemokine and hyaluronic acid release from degradable hydrogels on directing bone marrow derived cell homing to the myocardium. Biomaterials 2012;33:7849-57. https://doi.org/10.1016/j.biomaterials.2012.07.005
  95. Park JS, Rhau B, Hermann A, McNally KA, Zhou C, Gong D, et al. Synthetic control of mammalian-cell motility by engineering chemotaxis to an orthogonal bioinert chemical signal. Proc Natl Acad Sci U S A 2014;111:5896-901. https://doi.org/10.1073/pnas.1402087111
  96. Shin TH, Cheon J. Synergism of nanomaterials with physical stimuli for biology and medicine. Acc Chem Res 2017;50:567-72. https://doi.org/10.1021/acs.accounts.6b00559
  97. Riegler J, Liew A, Hynes SO, Ortega D, O'Brien T, Day RM, et al. Superparamagnetic iron oxide nanoparticle targeting of MSCs in vascular injury. Biomaterials 2013;34:1987-94. https://doi.org/10.1016/j.biomaterials.2012.11.040
  98. Landazuri N, Tong S, Suo J, Joseph G, Weiss D, Sutcliffe DJ, et al. Magnetic targeting of human mesenchymal stem cells with internalized superparamagnetic iron oxide nanoparticles. Small 2013;9:4017-26. https://doi.org/10.1002/smll.201300570
  99. Vandergriff AC, Hensley TM, Henry ET, Shen D, Anthony S, Zhang J, et al. Magnetic targeting of cardiosphere-derived stem cells with ferumoxytol nanoparticles for treating rats with myocardial infarction. Biomaterials 2014;35:8528-39. https://doi.org/10.1016/j.biomaterials.2014.06.031
  100. Tukmachev D, Lunov O, Zablotskii V, Dejneka A, Babic M, Sykova E, et al. An effective strategy of magnetic stem cell delivery for spinal cord injury therapy. Nanoscale 2015;7:3954-8. https://doi.org/10.1039/c4nr05791k
  101. Yun S, Shin TH, Lee JH, Cho MH, Kim IS, Kim JW, et al. Design of magnetically labeled cells (mag-cells) for in vivo control of stem cell migration and differentiation. Nano Lett 2018;18:838-45. https://doi.org/10.1021/acs.nanolett.7b04089
  102. Lledo PM, Alonso M, Grubb MS. Adult neurogenesis and functional plasticity in neuronal circuits. Nat Rev Neurosci 2006;7:179-93. https://doi.org/10.1038/nrn1867
  103. Sandoval KE, Witt KA. Blood-brain barrier tight junction permeability and ischemic stroke. Neurobiol Dis 2008;32:200-19. https://doi.org/10.1016/j.nbd.2008.08.005