
Journal of Internet Computing and Services(JICS) 2019. Apr.: 20(2): 29-37 29

Enhancing Model-based Fault Traceability by
Using Similarity between Bug and Commit

Information

정 동 주1 민 경 식1 이 정 원2 이 병 정1*

Dongju Jung Kyeongsic Min Jung-Won Lee Byungjeong Lee

ABSTRACT

As software development technology evolves, the quality of software has increased. But software created through sophisticated

technology is still defective. The developer will be aware of the defect through a bug report and the reported defect must be fixed

as soon as possible for the software to function correctly. It is important to know which component of the program is related to the

reported defect and should be fixed. However, even though the developer understands the developed software, the task of tracing

faults is a time-consuming task and requires effort. Therefore, if there is a way for developers to support tracing faults, they could fix

defects more quickly. Because fixing defects rapidly is a factor of software reliability, fault traceability is essential and an effective

method is needed. Therefore, in this paper, we propose a model-based fault traceability enhancement technique by using bug report

and commit information and verify the effectiveness of the proposed technique.

☞ keyword : Fault traceability, Bug Report, Commit Information

1. Introduction

The modern software has high quality through

sophisticated software development techniques and processes.

However, even though developed through a sophisticated

process, many defects are found in most software. Defects

are critical to software, and how to manage defects reported

to developers after software development is always a major

issue. Even if a developer understands the developed

software, in the case of large projects, it is difficult to predict

in a short time what components of the software defects are

1 Department of Computer Science, University of Seoul., Seoul,
02504, Korea.

2 Department of Electrical and Computer Engineering, Ajou
University., Suwon, 16499, Korea.

* Corresponding author (bjlee@uos.ac.kr)
[Received 31 December 2018, Reviewed 23 January 2019,
Accepted 28 February 2019]
☆ This research was supported by Next-Generation Information Co

mputing Development Program (NRF-2014M3C4A7030504) and
by Basic Science Research Program (NRF-2017R1A2B4009937)
through the National Research Foundation of Korea (NRF) fund
ed by the Ministry of Science, ICT, and Future Planning.

☆ A preliminary version of this paper was presented at APIC-IST
2018 and was selected as an outstanding paper.

associated with and which components to modify when the

defect is reported[1]. The procedure of tracing these faults

consumes additional human and temporal resources.

Therefore, it is necessary to trace the location of the

defect-related resources as well as how to correct the defects.

For supporting this, in this paper, we propose and verify a

enhancing model-based fault traceability technique using bug

report and commit information of software VCS. The

contribution of this study is as follows.

� We extract keywords from VCS commits descriptions,

source code changes, and bug report, and uses them as

criteria for selecting commits associated with the

reported bug report.

� After finding similar commit information, we use the

behavior model to trace resources related to the origin

of the fault.

An order of rest of this paper is as follows. We first

describe the background knowledge in Chapter 2. Chapter 3

introduces related works, and Chapter 4 describes our

proposed technique. And we do case study in Chapter 5, and

verify our technique through experiments using open source

project in Chapter 6. After that, we discuss our research in

Chapter 7. At last, in Chapter 8, we conclude our paper.

http://dx.doi.org/10.7472/jksii.2019.20.2.29

J. Internet Comput. Serv.
ISSN 1598-0170 (Print) / ISSN 2287-1136 (Online)
http://www.jics.or.kr
Copyright ⓒ 2019 KSII

Enhancing Model-based Fault Traceability by Using Similarity between Bug and Commit Information

30 2019. 4

2. Background Knowledge

2.1 Bug Report

A bug report describes the defect or functional

enhancement that the user found during the test phase or

using the deployed software [2, 3]. The bug report describes

the details of the defect and provides a variety of information

so that the developer can figure out the reason of the defect.

(Figure 1) A Bug Report

Figure 1 is an example of a bug report, one of the bug

reports from zxing , an open source project. The bug report

of github , the repository of git, contains information such as

title, bug report content, related images, and date.

2.2 Version Control System

The Version Control System (VCS) is a system for

assigning versions of changes of software source code and

software output, storing the versions, and controlling it.

When there are changes of the source code and output,

the developer commits it and reflects it in VCS. A single

commit has information such as a description of the commit

and source code changes. Generally, a commit description

describes source code changes or modified features to

indicate changes and allow for commits to be traced and

recovered throughout the project [4]. Typically, a unit of

commit is a group of changes with the same purpose, such

as bug fixes or functional enhancements. That is, changes

contained in a single commit are considered to be related

resources.

3. Related Works

There are many existing studies using a variety of

methodologies for fault traceability that trace related

resources in the event of a software fault. In the previous

studies, S. Back et al. [5] used behavior model, commit

information of VCS, and web application specified bug

report form for web applications developed on the basis of

MVC patterns. In the step of tracking the source code from

the bug report, [5] used the method of tracing the entry point

of the controller according to the user's request through the

URI information of the bug report if there is URI

information in the bug report. Otherwise, they used the

similarity between the bug report and the source code of the

controller. And [5] used only source code changes as commit

information to improve fault traceability, and considered the

source code changes in a single commit as associative

resources. C. Youm et al. [6] proposed a methodology to

improve fault traceability by utilizing bug report, structured

source code change history, and stack trace information

based on information retrieval method. L. Moreno et al. [7]

determined whether the bug report is related to the source

code information such as class name, method name, and

argument through the information retrieval method, and

proposed a methodology of tracing the source code from the

bug report.

Existing fault traceability studies mainly used information

retrieval methods, and some studies utilized behavior model

[8-12]. However, since the level of traceability of most of the

studies is a source code file level, it is hard to provide

detailed resources related to the defect to the developer. And

in [5], the trace level is a method level, but it is impossible

to apply it to general projects because the proposed technique

is restricted to web applications using MVC pattern. But, for

useful defect tracing techniques, the trace level should be as

Enhancing Model-based Fault Traceability by Using Similarity between Bug and Commit Information

한국 인터넷 정보학회 (20권2호) 31

detailed as a method level[13] and general versatility must be

ensured so that it can be applied to general projects.

4. Fault Traceability

Enhancement Technique

4.1 Overview

The overview of the fault traceability enhancement

technique proposed in this paper is shown in Figure 2. The

fault traceability technique is largely a two-step process. The

first step is finding the most related commit with the reported

bug report. gram as a behavior model. A detailed description

of each step is given in Sections 4.2 and 4.3.

(Figure 2) An Overview of Enhancing Fault Traceability

Technique

4.2 Tracing a Related Commit with the Bug

Report

This step is to trace the commit that has the most related

commit information with the bug report. This step takes

advantage of the nature of VCS's commits. Fist of all, a

commit description describes the changes made by the

commit. Also, changes contained in a single commit are

resources that are related to each other. Therefore, we use

VSM(Vector Space Model) and TF-IDF techniques to

calculate the similarity between the bug report and commit

information in order to find the commit related with the bug

report [14]. The detailed steps are as follows.

1. Extract keywords from the bug report and commit

information

2. Calculate similarity between bug report and commit

information using VSM

3. Extract information of the commit with the highest

similarity score

Step 1 removes stopwords from natural language and

program code and then extracts keywords. The target of the

keyword extraction is the description of the commit and the

source code changes. In the case of source code changes, we

extended the above and below three lines of source code

based on the added, changed, and deleted codes. This is a

heuristic method, in which some source codes in the

modified method are subjected to keyword extraction so that

it is possible to extract the more accurate keyword. In this

study, we used the stopword module of Node.js for Step 1.

In addition, in the source code changes of commits, we

improved the accuracy of Step 3 by removing some reserved

words such as public, void, string, and int as well as

stopword.

Step 2 is a step of calculating the similarity between the

bug report and the commit information. VSM is used to

calculate the similarity between the commit information and

the bug report, and the similarity expression can be expressed

as follows.

Enhancing Model-based Fault Traceability by Using Similarity between Bug and Commit Information

32 2019. 4

 In the similarity formula,  and  refer to the query and

i-th document in the , respectively. And






 is the term

weight vector of the i-th document, and  is the weight

vector of the query term respectively. Each term weight

vector is calculated using the term frequency (TF) and the

inverse document frequency (IDF), and its calculation

formula is as follows.

In the word frequency formula,  and  are terms and

documents, respectively , is the number of

occurrences of term  in document , and # of terms is the

total number of terms in document  . In the inverse

document frequency formula,  and  mean term and

whole document respectively, # of  means the total

number of documents, and  means the number of

documents containing term  . Also,  is the weight vector

of term  and the weight of term  is the product of 

and  .

As a final step, Step 3 ranks commits based on the

similarity score calculated using VSM and extracts the

information of the commit with the highest similarity score.

4.3 Enhancing Fault Traceability using

Behavior Model

In this study, a behavior model is used for improving

fault traceability. A behavior model represents how each

component behaves to a function that meets a specific

requirement. Generally, the behavior model is represented as

a sequence diagram [15] and can trace the resources

associated with the component [16]. We enhance fault

traceability by using the behavior model toward the

information of the commit which is most similar to the bug

report found through the method The detailed steps of this

method are as follows.

1. Extract source code changes from commit information

2. Extract methods modified by source code changes

3. Trace related resources using sequence diagrams

In the first step, only source code changes are extracted

from the information of the commit with the highest

similarity score. Step 2 is the step of extracting the method

modified by the source code changes. The source code

changes, which is the information of the commit, save only

which lines of source code have been added, modified and

deleted. It is necessary to determine the modified lines

belong to which method and class. Therefore, we parse the

modified source files to extract the method that the source

code changes belongs to.

As a final step, fault tracing is performed through the

component flow of the sequence diagram for the extracted

methods. The reason for this procedure is that the methods

that need to be modified to fix the bug may be in other

functionally related resources, rather than the source code

changes of the commit that most similar with the bug report.

In this paper, we define traceability set using enhanced fault

traceability as follows.

Traceability set TS is a set of methods. m_c is a method

modified by a commit similar to the bug report, and it is

added to the TS.  is an related method called by ,

which adds it to the TS.

5. Case Study

In this chapter, we will apply the examples to the

methodology presented above to the zxing project.

5.1 Tracing a Related Commit with the Bug

Report

We first extract keywords from the bug report of Figure

1 in Chapter 2, and remove stop words. The total number of

terms extracted from the bug report through this procedure is

70. After that, keywords excluding stop words and reserved

Enhancing Model-based Fault Traceability by Using Similarity between Bug and Commit Information

한국 인터넷 정보학회 (20권2호) 33

Commit ID # of terms
of identical

terms
VSM Score

84a3b27 11 93 0.5017

d1ef2a9 16 398 0.4889

90e1822 12 263 0.4822

02d3697 14 168 0.4810

23893a0 14 183 0.4737

words are extracted from the description and the source code

changes of the whole commit of the project. We then treat

the bug report as a query and the commit information as a

document, respectively. And then TF-IDF and VSM are

applied to them. Table 1 shows the results of calculating

similarity scores between the bug report and commits.

(Table 1) TF-IDF & VSM Result(Top 5 Commits)

Comparing the similarity scores calculated by the VSM

results, we can see that the commit (84a3b27...) with a

similarity score of 0.5017 is the most similar commit with the

bug report. Therefore, we extract the information of the

commit and use it in the next step.

5.2 Enhancing Fault Traceability by Using

Behavior Model

The source code changes of the commit extracted from

the previous step include lines 239-245 in RSSExpanded

Image2binaryTestCase.java, lines 91-97 in RSSExpanded

Image2resultTestCase.java and so on. First, we analyze the

structure of the method by parsing the modified Java files to

figure out which method the modified line belongs to.

Through the analyzed method structure, we can trace lines

239-245 in RSSExpandedImage2binaryTestCase.java and

lines 91-97 in RSSExpandedImag2resultTestCase.java

modified and belongs to assertCorrectImage2binary() method

and assertCorrectImage2result() method, respectively. We add

these traced methods to the traceability set TS.

As a final step, the behavior model, sequence diagram,

improves fault traceability. Figure 3 shows part of the flow of

the assertCorrectImage2result() method in the sequence

diagram of RSSExpandedImage2resultTestCase.java. According

to the sequence diagram in RSSExpandedImage2

resultTestCase.java, assertCorrectImage2result() calls getHeight()

and getBlackRow(). Therefore, these methods are added to

the traceability set TS, since these methods are also resources

associated with the fault.

In the zxing project, in reality, the developer applied a

commit (6cdc749...) to fix the bug described in the bug

report of the case study. The source code changes of this

commit are line 65, lines 69-86. These source code changes

are included in the getBlackRow() method in the

GlobalHistogramBinarizer.java file and this method exists in

the traceability set TS created in the case study. That is,

when the proposed technique is applied, it can be seen that

the defective method has been successfully traced.

(Figure 3) Sequence Diagram

6. Experiment and Evaluation

For verifying and seeing the effectiveness of the enhanced

fault traceability approach proposed in this paper in case of

a general program, we apply our approach to the open source

project. The subject of the experiment is the zxing project

used in case studies.

6.1 Experimental Environment and

Procedure

Before proceeding with the experiment, We collected bug

reports from the issues listed in github's zxing project, with

the exception of bug reports that is simple questions or have

lacked information. In addition, if the bug report includes an

image, the natural language portion excluding the image was

used as the bug report information. Also, in order to verify

the accuracy of the proposed method, it is necessary to

confirm that the tracked resources are related to actual

defects [17]. That is the commit that fixes the defect

described by the bug report should be clear to verify the

success of the test results. Therefore, only the bug reports

Enhancing Model-based Fault Traceability by Using Similarity between Bug and Commit Information

34 2019. 4

that are connected with commits and can confirm the success

of the experiment results were selected and became subject

of the experiment. Also, if the commit that most similar to

the bug report is a commit connected to the bug report, this

commit is exactly a commit for fixing the defect, so that it

is unacceptable fault traceability. Therefore, this kind of

commits, in this case, were excluded from the dataset of fault

traceability.

The experiment is divided into two steps. In the first step,

the VSM and the TF-IDF were used to select the commit

with high similarity to the bug report. Thereafter, the

methods including the source code changes of the selected

commit were extracted and added to the traceability set TS.

In the second step, the behavior model was used to enhance

fault traceability. We analyzed the behavioral model to trace

the methods called by the methods extracted in the previous

step and added those methods to the TS. In this study, we

confirmed the improvement effect of fault traceability

through these two steps.

6.2 Experiment Result

(Table 2) Experiment Results

Bug Reports File Trace Method Trace

 1/1 0/1

 0/1 1/1

 0/1 1/1

 1/1 1/1

 0/1 1/1

 0/1 1/1

 1/1 1/1

 1/1 1/1

 1/1 1/1

 1/8 1/10

 0/3 0/4

 0/3 0/1

 0/1 0/1

 0/3 0/2

 1/1 0.1

Table 2 shows the results of the experiment. We

experimented 15 bug reports set B in this paper. First, the

first step used VSM evaluates whether we can directly find

the file contains the fault. In this case, the average traceability

accuracy was about 41%. In case of traceability set TS consist

of only directly modified methods by the selected commit in

step 1, result of the fault traceability did not show a

meaningful value. Therefore, in the first step, we did not

track up to the method unit. In order to extend it to the

method unit, fault tracing was performed through the second

step using behavior model and its tracing accuracy was about

54% in method unit. In addition, through the second step, it

was possible to trace even the fault that failed to trace the file

in the first step, and it was confirmed that tracing using the

behavior model can improve the fault traceability. However, if

the number of files included in the commit is small and the

commit information is reliable and it was easy to distinguish

the specificity and purpose of the commit, high traceability

was obtained. In contrast, if the number of files is large or the

commit information is uncertain, the tracing fault was failed

or tracing only some of the resources. That is if the commit

contains the large scale of function or bug, or source code

changes are not closely related to each other, it becomes

difficult to distinguish the specificity and purpose of the

commit. So, it led to decreasing fault traceability precision.

7. Discussion

The feature of the proposed approach and related works

is to trace the resources related to the reported bug report by

using the existing project's commit history and behavior

model. Using this technique, it is possible to identify

defective resources and to fix them with minimized the

developer's time and effort. In this chapter, we compare the

fault traceability enhancement method of this study, which

was verified through previous case studies and experimental

results, with the existing studies and then discuss the

limitations.

7.1 Comparison with Existing Study

Table 3 shows the qualitative comparison of the features

of this study and previous studies. All of the previous

studies, including this study, used techniques such as NLP

(Natural Language Processing) of bug reports, ie

tokenization and stop word removal. Also, in all the studies,

Enhancing Model-based Fault Traceability by Using Similarity between Bug and Commit Information

한국 인터넷 정보학회 (20권2호) 35

VSM was used to convert the term of the bug report to

vector for calculating similarity. However, in this paper, we

used commit information including source code changes and

description for calculating similarity with bug reports, while

existing studies only used the source code of a software for

the similarity. Commit information has been used in some

existing studies, but its purpose is to use changed filenames

and changed method names. Therefore, the purpose is

different from the purpose of commit information in this

study. And the behavior model was used in some previous

studies as well as in this study. A fault traceability level of

the studies was method unit. However, our proposed method

can be applied to a general program, while the program that

can be traced by the method of [5] is limited to the web

application developed based on the MVC design pattern.

(Table 3) Qualitative Comparison of Our Study

and Existing Studies

[7] [5]
This

Study

Bug Report
NLP

Tokenize
Stopword

O O O

VSM O O O

Commit
Information

Changes X O O

Description X X O

Behavior Model X O O

Fault Trace Level Class Method Method

Application Domain General Web General

7.2 Limitation

1. Commit Information : This study begins by looking for

similar commit information with the reported bug report. But

it has a limitation that existing commits must have a commit

corresponding to the bug report. In addition, a certain

amount of commits are required for valid similarity

calculation for using TF-IDF. In other words, there is a

limitation that commits of the project occurs more than a

certain level and also the description of the commits must be

described well in order to use the technique proposed in this

study.

2. Behavior model : The second step of our technique is

fault traceability enhancement using behavior model. The

behavior model allows you to identify the methods

associated with the object. However, if the project to which

our technique is applied has a high coupling, there would be

too many associated components, and too many trace results

would be added to the traceability set TS. This can be

ineffective or adversely affecting developers who want to

use software fault traceability method to save time and

effort.

8. Conclusion

In this paper, we proposed a fault traceability

enhancement technique for the reported bug report. The

similar commit was traced through the computation of

similarity between the bug report and the commit

information. Next, behavior model was used for the similar

commit to improving fault traceability. Compare with

previous studies, this study can be applied to general

software and also tracing faults to method level at the same

time. However, it is possible that the behavior model leads

to a situation where too many trace results belong to the

traceability set. Therefore, in the future, it would be more

effective to rank the traceability results according to how

much the result in the traceability set is associated with the

fault. Also, in order to more accurately find a commit that

is similar to bug reports, we will develop techniques to

improve fault traceability by continuing to study additional

applicable elements such as commit author information other

than commit descriptions and source code changes.

 References

[1] D. Baek, B. Lee, J. Lee, "Content-based Configuration

Management System for Software Research and

Development Document Artifacts," KSII Transactions

on Internet and Information Systems, Vol. 10, No. 3,

pp.1404-1415, 2016.

http://dx.doi.org/10.3837/tiis.2016.03.027

[2] S. Kim, T. Zimmermann, E. Whitehead, A. Zeller,

"Predicting Faults from Cached History," in Proc. of

29th International Conference on Software Engineering

(ICSE), pp.489-498, 2007.

http://dx.doi.org/10.1109/ICSE.2007.66

Enhancing Model-based Fault Traceability by Using Similarity between Bug and Commit Information

36 2019. 4

[3] H. Zhang, "An Investigation of the Relationships between

Lines of Code and Defects," in Proc. of 2009 IEEE

International Conference on Software Maintenance

(ICSM), pp.274-283, 2009.

http://dx.doi.org/10.1109/ICSM.2009.5306304

[4] S. Wang, D. Lo, "Version History, Similar Report, and

Structure: Putting Them Together for Improved Bug

Localization," in Proc. of the 22nd International

Conference on Program Comprehension(ICPC),

pp.53-63, 2014.

http://dx.doi.org/10.1145/2597008.2597148

[5] S. Baek, J. Lee, B. Lee, "Improving fault traceability

of web application by utilizing software revision

information and behavior model,” KSII Transactions

on Internet and Information Systems, Vol. 12, No. 2,

pp.817-828, 2018.

http://doi.org/10.3837/tiis.2018.02.016

[6] C. Youm, J. Ahn, J. Kim, E. Lee, "Bug localization

based on code change histories and bug reports,” in

Proc. of Asia-Pacific Software Engineering Conference

(APSEC), pp.190-197, 2015.

http://doi.org/10.1109/APSEC.2015.23

[7] L. Moreno, W. Bandara, S. Haiduc, A. Marcus, "On

the Relationship between the Vocabulary of Bug

Reports and Source Code," in Proc. of International

Conference on Software Maintenance(ICSM),

pp.452-455, 2013.

http://dx.doi.org/10.1109/ICSM.2013.70

[8] R. Tsuchiya, H. Washizaki, Y. Fukazawa, K. Oshima,

R. Mibe, "Interactive Recovery of Requirements

Traceability Links Using User Feedback and

Configuration Management Logs," in Proc. of

International Conference on Advanced Information

Systems Engineering, pp.247-262, 2015.

http://dx.doi.org/10.1007/978-3-319-19069-3_16

[9] R. Tsuchiya, H. Washizaki, Y. Fukazawa, T. Kato, M.

Kawakami, K. Yoshimura, "Recovering Traceability

Links between Requirements and Source Code Using

the Configuration Management Log," IEICE

Transactions on Information and Systems, Vol. 98, No.

4, pp.852-862, 2015.

http://dx.doi.org/10.1587/transinf.2014EDP7199

[10] C. McMillan, D. Poshyvanyk, M. Revelle, "Combining

textual and structural analysis of software artifacts for

traceability link recovery," in Proc. of ICSE Workshop

on Traceability in Emerging Forms of Software

Engineering, pp.41-48, 2009.

https://doi.org/10.1109/TEFSE.2009.5069582

[11] B. Van Rompaey, S. Demeyer, "Establishing

Traceability Links between Unit Test Cases and Units

under Test," in Proc. of 13th European Conference on

Software Maintenance and Reengineering, pp.209-218,

2009.

https://doi.org/10.1109/CSMR.2009.39

[12] X. Ye, R. Bunescu, C. Liu, "Mapping Bug Reports

to Relevant Files: A Ranking Model, a Fine-Grained

Benchmark, and Feature Evaluation," IEEE

Transactions on Software Engineering, Vol. 42, No.

4, pp.379-402, 2016.

https://doi.org/10.1109/TSE.2015.2479232

[13] H. Choi, J. Lee, B. Lee, "Supporting Systematic

Software Test Process in R&D Project with Behavioral

Models," Journal of Internet Computing and

Services(JICS), Vol. 19, No. 2, pp.43-48, 2018.

http://dx.doi.org/10.7472/jksii.2018.19.2.43

[14] R. Saha, M. Lease, S. Khurshid, D. Perry, "Improving

Bug Localization using Structured Information

Retrieval," in Proc. of 2013 28th IEEE/ACM

International Conference on Automated Software

Engineering (ASE), pp.345-355, 2013.

http://dx.doi.org/10.1109/ASE.2013.6693093

[15] J. Rumbaugh, I. Jacobson, G. Booch, Unified Modeling

Language Reference Manual, Pearson Higher

Education, 2004.

[16] Le, T.B., Oentaryo, R.J., Lo, D., "Information Retrieval

and Spectrum Based Bug Localization: Better

Together," in Proc. of the 2015 10th Joint Meeting on

Foundations of Software Engineering(ESEC/FSE),

pp.579-590, 2015.

http://dx.doi.org/10.1145/2786805.2786880

[17] Herzig, K., Just, S., Zeller, A., "It’s Not a Bug, It’s

a Feature: How Misclassification Impacts Bug

Prediction," in Proc. of the 2013 International Conference

on Software Engineering(ICSE), pp.392-401, 2013.

http://dx.doi.org/10.1109/ICSE.2013.6606585

Enhancing Model-based Fault Traceability by Using Similarity between Bug and Commit Information

한국 인터넷 정보학회 (20권2호) 37

◐ 저 자 소 개 ◑

정 동 주(Dongju Jung)

2018년 서울시립대학교 컴퓨터과학부(학사)

2018년~현재 서울시립대학교 컴퓨터과학부 석사과정

관심분야 : 소프트웨어테스트, 소프트웨어공학

E-mail : jdj700@uos.ac.kr

민 경 식(Kyeongsic Min)

2018년 서울시립대학교 컴퓨터과학부(학사)

2018년~현재 서울시립대학교 컴퓨터과학부 석사과정

관심분야 : 소프트웨어테스트, 소프트웨어공학, 블록체인, 스마트 컨트랙트

E-mail : ksmin1710@uos.ac.kr

이 정 원(Jung-Won Lee)

1993년 이화여자대학교 전자계산학과(학사)

1995년 이화여자대학교 전자계산학과(석사)

1995년~1997년 LG종합기술원 주임연구원

2003년 이화여자대학교 컴퓨터학과(박사)

2003년~2006년 이화여자대학교 컴퓨터학과 BK교수, 전임강사(대우)

2006년~현재 아주대학교 전자공학과 교수

관심분야 : Embedded Software, Automotive Software, Bio·Medical Data Modeling

E-mail : jungwony@ajou.ac.kr

이 병 정(Byungjeong Lee)

1990년 서울대학교 계산통계학과(학사)

1990년~1998년 (주)하이닉스반도체 연구원

1998년 서울대학교 전산과학과(석사)

2002년 서울대학교 전기‧컴퓨터공학부(박사)

2002년~현재 서울시립대 컴퓨터과학부 교수

관심분야 : 소프트웨어테스트, 소프트웨어 진화, 소프트웨어공학

E-mail : bjlee@uos.ac.kr

