자가간섭 디지털 홀로그래피 기술

  • 발행 : 2019.04.30

초록

자가간섭 디지털 홀로그래피는 기존의 홀로그래피 기술과 달리 비간섭 광원을 이용해 홀로그램을 취득할 수 있는 기술이다. 자가간섭계는 입사한 파면을 분리하고 변조시킨 뒤 다시 상호 간섭이 가능하게 합쳐주는 장치를 필요로 한다. 지금까지 발표된 관련 연구들은 모두 파면의 분리 방식, 즉 공간적 분리와 편광 상태에 따른 분리 방식으로 나눌 수 있다. 시스템의 원리와 대표적인 두 가지 시스템을 소개하고, 이어서 필자의 연구실에서 제안한 기하학적 위상을 이용한 자가간섭 디지털 홀로그래피 기술을 다룬다.

키워드

참고문헌

  1. A. W. Lohmann, "Wavefront reconstruction for incoherent objects," J. Opt. Soc. Am., 55(11):1555-1556 (1965). https://doi.org/10.1364/JOSA.55.001555
  2. D Gabor, "A new microscopic principle," Nature, 161:777-778 (1948). https://doi.org/10.1038/161777a0
  3. I. Yamaguchi and T. Zhang, "Phase-shifting digital holography," Opt. Lett., 22(16):1268-1270 (1997). https://doi.org/10.1364/OL.22.001268
  4. G. Cochran, "New Method of Making Fresnel Transforms with Incoherent Light," J. Opt. Soc. Am., 56(11):1513-1517 (1966). https://doi.org/10.1364/JOSA.56.001513
  5. G. Pedrini, H. Li, A. Faridian and W. Osten, "Digital holography of self-luminous objects by using a Mach-Zehnder setup," Opt. Lett., 37(4):713-715 (2012). https://doi.org/10.1364/OL.37.000713
  6. M. K. Kim, "Incoherent digital holographic adaptive optics," Appl. Opt., 52(1):A117-A130 (2013). https://doi.org/10.1364/AO.52.00A117
  7. J. Rosen and G. Brooker, "Digital spatially incoherent Fresnel holography," Opt. Lett., 32(8):912-914 (2007). https://doi.org/10.1364/OL.32.000912
  8. G. Brooker, N. Siegel, J. Rosen, N. Hashimoto, M. Kurihara and A. Tanabe, "In-line finch super resolution digital holographic fluorescence microscopy using a high efficiency transmission liquid crystal GRIN lens," Opt. Lett., 38(24):5264-5267 (2013). https://doi.org/10.1364/OL.38.005264
  9. N. Siegel, V. Lupashin, B. Storrie and Gary Brooker, "High-magnification super-resolution FINCH microscopy using birefringent crystal lens interferometers," Nat. Photon., 10:802 (2016). https://doi.org/10.1038/nphoton.2016.207
  10. S. Pancharatnam, "Generalized theory of interference, and its applications," Proc. Indian Acad. Sci. - Sect. A 44, 247-262 (1956). https://doi.org/10.1007/BF03046050
  11. M. V. Berry, "Quantal phase factors accompanying adiabatic changes," Proc. Royal Soc. A, 392(1802):45-57 (1984). https://doi.org/10.1098/rspa.1984.0023
  12. P. Hariharan and P.E. Ciddor, "An achromatic phase-shifter operating on the geometric phase," Opt. Commun., 110(1):13 - 17 (1994). https://doi.org/10.1016/0030-4018(94)90163-5
  13. R. Bhandari, "Polarization of light and topological phases," Phys. Rep., 281(1):1 - 64 (1997). https://doi.org/10.1016/S0370-1573(96)00029-4
  14. J. Kim, Y. Li, M. N. Miskiewicz, C. Oh, M. W. Kudenov, and M. J. Escuti, "Fabrication of ideal geometric-phase holograms with arbitrary wavefronts," Optica 2, 958-964 (2015). https://doi.org/10.1364/OPTICA.2.000958
  15. L. D. Sio, D. E. Roberts, Z. Liao, S. Nersisyan, O. Uskova, L. Wickboldt, N. Tabiryan, D. M. Steeves and Brian R. Kimball, "Digital polarization holography advancing geometrical phase optics," Opt. Express 24, 18297-18306 (2016). https://doi.org/10.1364/OE.24.018297
  16. K. Choi, J. Yim, S. Yoo and S-.W. Min, "Self-interference digital holography with a geometric-phase hologram lens," Opt. Lett., 42(19):3940-3943 (2017). https://doi.org/10.1364/OL.42.003940
  17. K. Choi, J. Yim and S-.W. Min, "Achromatic phase shifting self-interference incoherent digital holography using linear polarizer and geometric phase lens," Opt. Express, 26(13):16212-16225 (2018). https://doi.org/10.1364/OE.26.016212
  18. K. Choi, K-.I. Joo, T-.H. Lee, H-.R. Kim, J. Yim, H. Do and S-.W. Min, "Compact self-interference incoherent digital holographic camera system with real-time operation," Opt. Express, 27(4):4818-4833 (2019). https://doi.org/10.1364/OE.27.004818