DOI QR코드

DOI QR Code

Free vibration of Cooper-Naghdi micro saturated porous sandwich cylindrical shells with reinforced CNT face sheets under magneto-hydro-thermo-mechanical loadings

  • Yazdani, Raziye (Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan) ;
  • Mohammadimehr, Mehdi (Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan) ;
  • Navi, Borhan Rousta (Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan)
  • Received : 2018.05.23
  • Accepted : 2019.02.24
  • Published : 2019.05.10

Abstract

In this paper, free vibration of Cooper-Naghdi micro sandwich cylindrical shell with saturated porous core and reinforced carbon nanotube (CNT) piezoelectric composite face sheets is investigated by using first order shear deformation theory (FSDT) and modified couple stress theory (MCST). The sandwich shell is subjected to magneto-thermo-mechanical loadings with temperature dependent material properties. Energy method and Hamilton's principle are used for deriving of the motion equations. The equations are solved by Navier's method. The results are compared with the obtained results by the other literatures. The effects of various parameters such as saturated porous distribution, geometry parameters, volume fraction and temperature change on the natural frequency of the micro-sandwich cylindrical shell are addressed. The obtained results reveal that the natural frequency of the micro sandwich cylindrical shell increases with increasing of the radius to thickness ratio, Skempton coefficient, the porosity of the core, and decreasing of the length to radius ratio and temperature change.

Keywords

Acknowledgement

Supported by : University of Kashan

References

  1. Akbari Alashti, R. and Khorsand, M. (2012), "Tree-dimensional dynamo-thermo-elastic of a functionally graded cylindrical shell with piezoelectric layers by DQ-FD coupled", J. Pres. Vessels Piping, 96-97, 49-67. https://doi.org/10.1016/j.ijpvp.2012.06.006.
  2. Ansari, R., Gholami, R. and Sahmani, S. (2011), "Free vibration analysis of size-dependent functionally graded microbeams based on the strain gradient Timoshenko beam theory", Compos. Struct., 94, 221-228. https://doi.org/10.1016/j.compstruct.2011.06.024.
  3. Arani, A.G. and Amir, S. (2013), "Electro-thermal vibration of visco-elastically coupled BNNT systems conveying embedded on elastic foundation via strain gradient theory", Physica B Condense Matt., 419, 1-6. https://doi.org/10.1016/j.physb.2013.03.010.
  4. Arani, A.G., Arani, H.K. and Maraghi, Z.K. (2016), "Vibration analysis of sandwich composite micro-plate under electromagneto-mechanical loadings", Appl. Math. Model. 40, 10596- 10615. https://doi.org/10.1016/j.apm.2016.07.033.
  5. Arani, A.G., Haghparast, E., Maraghi, Z.K. and Amir, S. (2015), "Static stress analysis of carbon nano-tube reinforced composite (CNTRC) cylinder under non-axisymmetric thermo-mechanical loads and uniform electromagnetic fields", Compos. Part B Eng., 68, 136-145. https://doi.org/10.1016/j.compositesb.2014.08.036.
  6. Arani, A.G., Mobarakeh, M.R., Shams, S. and Mohammadimehr, M. (2012), "The effect of CNT volume fraction on the magneto-thermo-electro-mechanical behavior of smart nanocomposite cylinder", J. Mech. Sci, Tech., 26(8), 2565-2572. https://doi.org/10.1007/s12206-012-0639-5.
  7. Arani, A.G., Rousta Navi, B. and Mohammadimehr, M. (2016), "Surface stress and agglomeration effects on nonlocal biaxial buckling polymeric nanocomposite plate reinforced by CNT using various approaches", Adv. Compos. Mater., 25(5), 423-441. https://doi.org/10.1080/09243046.2015.1052189.
  8. Arefi, M. and Zenkour, A.M. (2016), "Vibration and bending analysis of a sandwich microbeam with two integrated piezomagnetic face-sheets", Compos. Struct.,159, 479-490. https://doi.org/10.1016/j.compstruct.2016.09.088.
  9. Bahadori, R. and Najafizadeh, M.M. (2015), "Free vibration of two-dimensional functionally graded axisymmetric cylindrical shell on Winkler-Pasternak elastic foundation by First-order Shear Deformation Theory and using Navier differential quadrature solution methods", Appl. Math. Model, 39, 4877-4894. https://doi.org/10.1016/j.apm.2015.04.012.
  10. Chen, N., Long, C., Li, Y., Wang, D. and Zhu, H. (2018), "Highperformance layered double hydroxide/poly(2,6-dimethyl-1,4-phenylene oxide) membrane with porous sandwich structure for anion exchange membrane fuel cell applications", J. Mem. Sci. 552, 51-60. https://doi.org/10.1016/j.memsci.2018.01.045.
  11. Cooper, R.M. and Naghdi, P.M. (1957), "Propagation of nonaxially symmetric waves in elastic cylindrical shells", J. Acous. Soc. Am., 29, 1365-1372. https://doi.org/10.1121/1.1908812
  12. Dehrouyeh-Semnani, A.M., Dehrouyeh, M., Torabi-Kafshgari, M. and Nikkhah-Bahrami, M.A. (2015), "Damped sandwich beam model based on symmetric-deviatoric couple stress theory", J. Eng. Sci., 92, 83-94. https://doi.org/10.1016/j.ijengsci.2015.03.007.
  13. Dey, T. and Ramachandra, L.S (2016), "Non-Linear vibration analysis of laminated composite circular cylindrical shells", Compos. Struct., 163, 89-100. https://doi.org/10.1016/j.compstruct.2016.12.018.
  14. Dong, Y.H. and Li, Y.H. (2016), "A unified nonlinear analytical solution of bending buckling and vibration for the temperaturedependent FG rectangular plates subjected to thermal load", Compos. Struct., 159, 689-701. https://doi.org/10.1016/j.compstruct.2016.10.001.
  15. Farajpour, A., Hairi Yazdi, M.R., Rastgoo, A., Loghmani, M. and Mohammadi, M. (2016), "Nonlocal nonlinear plate model for large amplitude vibration of magneto-electro-elastic nanoplate", Compos. Struct., 140, 323-336. https://doi.org/10.1016/j.compstruct.2015.12.039.
  16. Gui, W., Liang, Y., Hao, G., Lin, J., Sun, D., Liu, M., Liu, C. and Zhang, H. "High Nb-TiAl-based porous composite with hierarchical micro-pore structure for high temperature applications", https://doi.org/10.1016/j.jallcom.2018.02.081.
  17. Jabbari, M., Farzaneh Joubaneh, E., Khorshidvand, A.R. and Eslami, M.R. (2013), "Buckling analysis of porous circular plate with piezoelectric actuator layers under uniform radial compression", Int. J. Mech. Sci., 70, 50-56. https://doi.org/10.1016/j.ijmecsci.2013.01.031.
  18. Jalaei, M.H. and Arani, A.G. (2018), "Size-dependent static and dynamic responses of embedded double-layered graphene sheets under longitudinal magnetic field with arbitrary boundary conditions", Compos. Part B, 142, 117-130. https://doi.org/10.1016/j.compositesb.2017.12.053.
  19. Kamarian, S. and Shakeri, M. (2016), "Natural frequency analysis of composite skew plates with embedded shape memory alloys in thermal environment", Int. J. Mech. Sci., 108, 157-165. https://doi.org/10.1016/j.ijmecsci.2016.02.006
  20. Ke, L.L., Liu, C.H. and Wang, Y. (2015), "Free vibration of nonlocal piezoelectric nanoplates under various boundary conditions", Physica E., 66, 93-106. https://doi.org/10.1016/j.physe.2014.10.002.
  21. Kheibari, K. and Tadi Beni, Y. (2016), "Size dependent electromechanical vibration of single-walled piezoelectric nanotubes using thin shell model", Mater. Des., 114, 572-583. https://doi.org/10.1016/j.matdes.2016.10.041.
  22. Lee, J., Lee, Y. A., Yoo, C. Y., Yoo, J. J., Gwak, R., Cho, W. K., Kim, B. and Yoon, H. (2018), "Self-templated synthesis of interconnected porous carbon nanosheets with controllable pore size: Mechanism and electrochemical capacitor application.", Micro. Meso. Mater., 261, 119-125. https://doi.org/10.22060/mej.2017.12655.5389.
  23. Lei, Z.X., Zhang, L.W. and Liew, K.M. (2015), "Vibration analysis of CNT-reinforced functionally graded rotating cylindrical panels using the element-free kp-Ritz method", Compos. Part B, 77, 291-303. https://doi.org/10.1016/j.compositesb.2015.03.045
  24. Li, Y.S. and Pan, E. "Static bending and free vibration of a functionally graded piezoelectric microplate based on the modified couple-stress theory", Int. J. Eng. Sci., 97, 40-59. https://doi.org/10.1016/j.ijengsci.2015.08.009.
  25. Loy, C.T., Lam, K.Y. and Shu, C. (1997), "Analysis of cylindrical shells using generalized differential quadrature", Shock Vib., 4, 193-198. https://doi.org/10.3233/SAV-1997-4305.
  26. Mohammadimehr, M. and Alimirzaei, S. (2016), "Nonlinear static and vibration analysis of Euler-Bernoulli composite beam model reinforced by FG-SWCNT with initial geometrical imperfection using FEM", Struct. Eng. Mech., 59(3), 431-454. http://doi.org/10.12989/sem.2016.59.3.431.
  27. Mohammadimehr, M. and Mehrabi, M. (2017), "Stability and free vibration analysis of double-bonded micro composite sandwich cylindrical shells conveying fluid flow", Appl. Math Model, 47, 685-709. https://doi.org/10.1016/j.apm.2017.03.054.
  28. Mohammadimehr, M. and Mostafavifar, M. (2016), "Free vibration analysis of sandwich plate with a transversely flexible core and FG-CNTs reinforced nanocomposite face sheets subjected to magnetic field and temperature-dependent material properties using SGT", Compos Part B, 94, 253-270. https://doi.org/10.1016/j.compositesb.2016.03.030.
  29. Mohammadimehr, M. and Rahmati, A.H. (2013), "Small scale effect on electro-thermo-mechanical vibration analysis of single-walled boron nitride nanorods under electric excitation", Turk. J. Eng. Environ. Sci., 37(1), 1-15. https://doi.org/10.3906/muh-1201-17
  30. Mohammadimehr, M. and Shahedi, S. (2016), "High-order buckling and free vibration analysis of two types sandwich beam including AL or PVC-foam flexible core and CNTs reinforced nanocomposite face sheets using GDQM", Compos. Part B, 108, 91-107. https://doi.org/10.1016/j.compositesb.2016.09.040
  31. Mohammadimehr, M., Okhravi, S.V. and Akhavan Alavi, S.M. (2018a), "Free vibration analysis of magneto-electro-elastic cylindrical composite panel reinforced by various distributions of CNTs with considering open and closed circuits boundary conditions based on FSDT", J. Vib. Control, 24(8), 1551-1569. https://doi.org/10.1177/1077546316664022.
  32. Mohammadimehr, M., Rostami, R. and Arefi, M. (2016d), "Electro-elastic analysis of a sandwich thick plate considering FG core and composite piezoelectric layers on Pasternak foundation using TSDT", Steel Compos. Struct., 20(3), 513-543. https://doi.org/10.12989/scs.2016.20.3.513
  33. Mohammadimehr, M., Rousta Navi, B. and Ghorbanpour Arani, A. (2016b), "Free vibration of viscoelastic double-bonded polymeric nanocomposite plates reinforced by FG-SWCNTs using MSGT sinusoidal shear deformation theory and meshless method", Compos. Struct., 131, 654-671. https://doi.org/10.1016/j.compstruct.2015.05.077.
  34. Mohammadimehr, M., Rousta Navi, B. and Ghorbanpour Arani, A. (2016c), "Modified strain gradient Reddy rectangular plate model for biaxial buckling and bending analysis of doublecoupled piezoelectric polymeric nanocomposite reinforced by FG-SWNT", Compos. Part B, 87,132-148. https://doi.org/10.1016/j.compositesb.2015.10.007
  35. Mohammadimehr, M., Saidi, A.R., Ghorbanpour Arani, A., Arefmanesh, A. and Han, Q. (2011), "Buckling analysis of double-walled carbon nanotubes embedded in an elastic medium under axial compression using non-local Timoshenko beam theory", Proceedings of the Institution of Mechanical Engineers, Part C J. Mech. Eng. Sci., 225(2), 498-506. https://doi.org/10.1177/2041298310392861
  36. Mohammadimehr, M., Salemi, M. and Rousta Navi, B. (2016a), "Bending buckling and free vibration analysis of MSGT microcomposite Reddy plate reinforced by FG-SWCNTs with temprature-dependent material properties under hydro-thermomechanical loadings using DQM", Compos. Struct., 138, 361-380. https://doi.org/10.1016/j.compstruct.2015.11.055
  37. Mohammadimehr, M., Shabani Nejad, E. and Mehrabi, M. (2018b), "Buckling and vibration analyses of MGSGT doublebonded micro composite sandwich SSDT plates reinforced by CNTs and BNNTs with isotropic foam & flexible transversely orthotropic cores", Struct. Eng. Mech., 65(4), 491-504. https://doi.org/10.12989/sem.2018.65.4.491.
  38. Mohammadimehr, M., Zarei, H.B., Parakandeh, A. and Arani, A.G. (2017), "Vibration analysis of double-bonded sandwich microplates with nanocomposite facesheets reinforced by symmetric and un-symmetric distributions of nanotubes under multi physical fields", Struct. Eng. Mech., 64(3), 361-379. http://doi.org/10.12989/sem.2017.64.3.361.
  39. Murmu, T., McCarthy, M.A. and Adhikari, S. (2012), "Vibration response of double-walled carbon nanotubes subjected to an externally applied longitudinal magnetic field: A nanlocal elasticity approach", J. Sound. Vib., 331, 5069-5086. https://doi.org/10.1016/j.compositesb.2016.06.028
  40. Pourasghar, A. and Kamarian, S. (2016), "Thermoelastic response of CNT reinforced cylindrical panel resting on elastic foundation using theory of elasticity", Mater. Des., 49, 583-590. https://doi.org/10.1016/j.matdes.2013.01.001
  41. Razavi, H., Babadi, A.F. and Beni, Y.T. (2017), "Free vibration analysis of functionally graded piezoelectric cylindrical nanoshell based on consistent couple stress theory", Compos. Struct., 160, 1299-1309. https://doi.org/10.1016/j.compstruct.2016.10.056
  42. Shaat, M. (2015), "Effects of grain size and microstructure rigid rotations on the bending behavior of nanocrystalline material beams", J. Mech. Sci., 94-95, 27-35. https://doi.org/10.1016/j.compositesb.2017.10.032
  43. Shaat, M. (2015), "Physical and mathematical representations of couple stress effects on micro/nanosolids", Int. J. Appl. Mech., 7(1), 155-183. https://doi.org/10.1142/S1758825115400128.
  44. Shaat, M. and Abdelkefi, A. (2015), "Modeling the material structure and couple stress effects of nanocrystalline silicon beams for pull-in and bio-mass sensing applications", J. Mech. Sci., 101-102, 280-291. https://doi.org/10.1016/j.ijmecsci.2015.08.002
  45. Shaat, M. and Mohamed, S.A. (2014), "Nonlinear-electrostatic analysis of micro-actuated beams based on couple stress and surface elasticity theories", J. Mech. Sci., 84, 208-217. https://doi.org/10.1016/j.ijmecsci.2014.04.020
  46. Shaat, M., Mahmoud, F.F., Gao, X.L. and Faheem, A.F. (2014), "Size-dependent bending analysis of Kirchhoff nanoplates based on a modified couple-stress theory including surface effects", J. Mech. Sci., 79, 31-37. https://doi.org/10.1016/j.ijmecsci.2013.11.022
  47. Shen, H.S., Xiang, Y., Fan, Y. and Hui, D. (2018), "Nonlinear vibration of functionally graded graphene-reinforced composite laminated cylindrical panels resting on elastic foundations in thermal environments", Compos. Part B, 136, 177-186. https://doi.org/10.1016/j.compositesb.2017.10.032
  48. Song, Z.G., Zhang, L.W. and Liew, K.M. (2016), "Vibration analysis of CNT-reinforced functionally graded composite cylindrical shells in thermal environments", J. Mech. Sci., 115, 339-347. https://doi.org/10.1016/j.ijmecsci.2016.06.020
  49. Tadi Beni, Y., Mehralian, F. and Razavi, H. (2015), "Free vibration analysis of size-dependent shear deformation functionally graded cylindrical shell on the basis of modified couple stress theory", Compos. Struct., 120, 65-78. https://doi.org/10.1016/j.compstruct.2014.09.065
  50. Tsiatas, G.C. (2009), "A new Kirchhoff plate model based on a modified couple stress theory", J. Solids. Struct., 46, 2757-2764. https://doi.org/10.1016/j.ijsolstr.2009.03.004
  51. Wang, Y. and Wu, D. (2017), "Free vibration of functionally graded porous cylindrical shell using a sinusoidal shear deformation theory", Aero Sci. Technol., 66, 83-91. https://doi.org/10.1016/j.ast.2017.03.003
  52. Yang, F., Chong, A.C.M., Lam, D.C.C. and Tong, P. (2002), "Couple stress based strain gradient theory for elasticity", J. Solids Struct., 39, 2731-2743. https://doi.org/10.1016/S0020-7683(02)00152-X
  53. Yang, G. and Park, S.J. (2018), "MnO2 and biomass-derived 3D porous carbon composites electrodes for high performance supercapacitor applications", J. Alloys Compounds, 741, 360-367. https://doi.org/10.1016/j.jallcom.2018.01.108.
  54. Yang, J., Xiong, J., Ma, L., Zhang, G., Wang, X. and Wu, L. (2014), "Study on vibration damping of composite sandwich cylindrical shell with pyramidal truss-like cores", Compos. Struct., 117, 362-372. https://doi.org/10.1016/j.compstruct.2014.06.042
  55. Zeighampour, H. and Tadi Beni, Y. (2014), "Cylindrical thin-shell model based on modified strain gradient theory", J. Eng. Sci., 2 78, 27-47. https://doi.org/10.1016/j.ijengsci.2014.01.004
  56. Zhang, Q., Hu, Z., Yang, Y., Zhang, Z., Wang, X., Yang, X., An, Y. and Guo, B. (2018), "Metal organic frameworks-derived porous carbons/ruthenium oxide composite and its application in super capacitor", J. Alloys Compounds, 735, 1673-1681. https://doi.org/10.1016/j.jallcom.2017.11.268
  57. Zhang, Y. and Park, S.J. (2017), "Au-pd bimetallic alloy nanoparticle-decorated BiPO4 nanorods for enhanced photocatalytic oxidation of trichloroethylene", J. Catalysis, 355, 1-10. https://doi.org/10.1016/j.jcat.2017.08.007
  58. Zhang, Y. and Park, S.J. (2017a), "Au-pd bimetallic alloy nanoparticle-decorated BiPO4 nanorods for enhanced photocatalytic oxidation of trichloroethylene", J. Catal., 355, 1-10. https://doi.org/10.1016/j.jcat.2017.08.007
  59. Zhang, Y. and Park, S.J. (2017b), "Incorporation of RuO2 into charcoal-derived carbon with controllable microporosity by CO2 activation for high-performance supercapacitor", Carbon, 122, 287-297. https://doi.org/10.1016/j.carbon.2017.06.085
  60. Zhang, Y. and Park, S.J. (2017c), "Incorporation of RuO2 into charcoal-derived carbon with controllable microporosity by CO2 activation for high-performance supercapacitor", Carbon, 122, 287-297. https://doi.org/10.1016/j.carbon.2017.06.085.
  61. Zhang, Y. and Park, S.J. (2018), "Bimetallic AuPd alloy nanoparticles deposited on MoO3 nanowires for enhanced visible-light driven trichloroethylene degradation", J. Catalysis, 361, 238-247. https://doi.org/10.1016/j.jcat.2018.03.010
  62. Zhang, Y. and Park, S.J. (2018), "Formation of hollow MoO3/SnS2 heterostructured nanotubes for efficient lightdriven hydrogen peroxide production", J. Mater. Chem. A, 6, 20304-20312. https:// doi.org 10.1039/C8TA08385A.
  63. Zhang, Y. and Park, S.J. (2018a), "Bimetallic AuPd alloy nanoparticles deposited on MoO3 nanowires for enhanced visible-light driven trichloroethylene degradation", J. Catal., 361, 238-247. https://doi.org/10.1016/j.jcat.2018.03.010
  64. Zhang, Y. and Park, S.J. (2018b), "Formation of hollow MoO3/SnS2 heterostructured nanotubes for efficient lightdriven hydrogen peroxide production", J. Mater. Chem. A, 6, 20304-20312. https://doi.org/10.1039/C8TA08385A.
  65. Zhang, Y. and Park, S.J. (2019), "Facile construction of MoO3@ZIF-8 core-shell nanorods for efficient photoreduction of aqueous Cr (VI)", Catal B Environ., 240, 92-10. https://doi.org/10.1016/j.apcatb.2018.08.077
  66. Zhang, Y. and Park, S.J. (2019), "Facile construction of MoO3@ZIF-8 core-shell nanorods for efficient photoreduction of aqueous Cr (VI)", Appl. Catalysis B Environ., 240, 92-101. https://doi.org/10.1016/j.apcatb.2018.08.077
  67. Zhang, Y., Choi, J.R. and Park, S.J. (2017a), "Thermal conductivity and thermo-physical properties of nanodiamondattached exfoliated hexagonal boron nitride/epoxy nanocomposites for microelectronics", Compos. Part A Appl. Sci. Manufact., 101, 227-236. https://doi.org/10.1016/j.compositesa.2017.06.019
  68. Zhang, Y., Heo, Y.J., Son, Y.R. and Park, S.J. (2019), "Recent advanced thermal interfacial materials: A review of conducting mechanisms and parameters of carbon materials", Carbon, 142, 445-460. https://doi.org/10.1016/j.carbon.2018.10.077
  69. Zhang, Y., Rhee, K.Y. and Park, S.J. (2017b), "Nanodiamond nanocluster-decorated graphene oxide/epoxy nanocomposites with enhanced mechanical behavior and thermal stability", Compos. Part B Eng., 114, 111-120. https://doi.org/10.1016/j.compositesb.2017.01.051

Cited by

  1. Hygro-Magnetic Vibration of the Single-Walled Carbon Nanotube with Nonlinear Temperature Distribution Based on a Modified Beam Theory and Nonlocal Strain Gradient Model vol.12, pp.5, 2020, https://doi.org/10.1142/s1758825120500544