DOI QR코드

DOI QR Code

Theoretical analysis of chirality and scale effects on critical buckling load of zigzag triple walled carbon nanotubes under axial compression embedded in polymeric matrix

  • Received : 2018.08.04
  • Accepted : 2019.02.21
  • Published : 2019.05.10

Abstract

Using the non-local elasticity theory, Timoshenko beam model is developed to study the non- local buckling of Triple-walled carbon nanotubes (TWCNTs) embedded in an elastic medium under axial compression. The chirality and small scale effects are considered. The effects of the surrounding elastic medium based on a Winkler model and van der Waals' (vdW) forces between the inner and middle, also between the middle and outer nanotubes are taken into account. Considering the small-scale effects, the governing equilibrium equations are derived and the critical buckling loads under axial compression are obtained. The results show that the critical buckling load can be overestimated by the local beam model if the small-scale effect is overlooked for long nanotubes. In addition, significant dependence of the critical buckling loads on the chirality of zigzag carbon nanotube is confirmed. Furthermore, in order to estimate the impact of elastic medium on the non-local critical buckling load of TWCNTs under axial compression, the use of these findings are important in mechanical design considerations, improve and reinforcement of devices that use carbon nanotubes.

Keywords

References

  1. Abdelhak, Z., Hadji, L., Tahar, H.D. and Adda Bedia, E.A. (2016), "Thermal buckling response of functionally graded sandwich plates with clamped boundary conditions", Smart Struct. Syst., 18(2), 267-291. https://doi.org/10.12989/sss.2016.18.2.267.
  2. Adim, B., Tahar, H.D., Abbas, B. and Rabahi, A. (2016), "Buckling and free vibration analysis of laminated composite plates using an efficient and simple higher order shear deformation theory", J. Mech. Industr., 17(5), 512. https://doi.org/10.1051/meca/2015112.
  3. Adim, B., Tahar, H.D., Abderrezak, R., Amine, B.M., Mohamed, Z. and Boussad, A. (2018), "Mechanical buckling analysis of hybrid laminated composite plates under different boundary conditions", Struct. Eng. Mech., 66(6), 761-769. https://doi.org/10.12989/sem.2018.66.6.761.
  4. Aissani, K., Bachir Bouiadjra, M., Ahouel, M. and Tounsi, A. (2015), "A new nonlocal hyperbolic shear deformation theory for nanobeams embedded in an elastic medium", Struct. Eng. Mech., 55(4), 743-762. https://doi.org/10.12989/sem.2015.55.4.743.
  5. Ajayan P.M. and Zhou, O.Z. (2001), "Applications of carbon nanotubes", Appl. Phys., 80, 391-425. https://doi.org/10.1007/3-540-39947-X_14
  6. Akgoz, B. and Civalek, O. (2011), "Buckling analysis of cantilever carbon nanotubes using the strain gradient elasticity and modified couple stress theories", J. Comput. Theoret. Nanosci., 8(9), 1821-1827. https://doi.org/10.1166/jctn.2011.1888.
  7. Ansari, R., Gholami, R. and Sahmani, S. (2012), "On the dynamic stability of embedded single-walled carbon nanotubes including thermal environment effects", Sci. Iran., 19(3), 919-925. https://doi.org/10.1016/j.scient.2012.02.013.
  8. Ansari, R., Gholami, R., Sahmani, S., Norouzzadeh, A. and Bazdid-Vahdati, M. (2015), "dynamic stability analysis of embedded multi-walled carbon nanotubes in thermal environment", Acta Mech. Sol. Sinic., 28(6), 659-667. https://doi.org/10.1016/S0894-9166(16)30007-6.
  9. Bao, W.X., Zhu, C.C. and Cui, W.Z. (2004), "Simulation of Young's modulus of single-walled carbon nanotubes by molecular dynamics", Phys. B, 352(1-4), 156-163. https://doi.org/10.1016/j.physb.2004.07.005.
  10. Batra, R.C. and Sears, A. (2007), "Continuum models of multiwalled carbon nanotubes", Int. J. Sol. Stuct., 44(22-23), 7577-7596. https://doi.org/10.1016/j.ijsolstr.2007.04.029.
  11. Benferhat, R., Rabahi, A., Tahar, H.D. Abbes, B., Adim, B. and Abbes, F. (2018), "Analytical analysis of the interfacial shear stress in RC beams strengthened with prestressed exponentiallyvarying properties plate", Adv. Mater. Res., 7(1), 29-44. https://doi.org/10.12989/amr.2018.7.1.029.
  12. Benferhat, R., Tahar, H.D. and Mansour, M.S. (2016), "Free vibration analysis of FG plates resting on the elastic foundation and based on the neutral surface concept using higher order shear deformation theory", Compt. Rend. Mecaniq., 344(9), 631-641. https://doi.org/10.1016/j.crme.2016.03.002.
  13. Benhenni, M., Tahar, H.D., Abbes, B., Li, Y.M. and Abbes, F. (2018), "Analytical and numerical results for free vibration of laminated composites plates", Int. J. Chem. Molecul. Eng., 12(6), 300-304.
  14. Bensattalah, T., Bouakkaz, K., Zidour, M. and Daouadji, T.H. (2018), "Critical buckling loads of carbon nanotube embedded in Kerr's medium", Adv. Nano Res., 6(4), 339-356. https://10.12989/anr.2018.6.4.339.
  15. Bensattalah, T., Mohamed, Z., Amar Meziane, M.A., Tahar, H.D. and Tounsi, A. (2018) "Critical buckling load of carbon nanotube with non-local Timoshenko beam using the differential transform method", Int. J. Civil Environ. Eng., 12(6).
  16. Bensattalah, T., Tahar, H.D., Zidour, M., Tounsi, A. and Adda Bedia, E.A. (2016), "Investigation of thermal and chirality effects on vibration of single-walled carbon nanotubes embedded in a polymeric matrix using nonlocal elasticity theories", Mech. Compos. Mater., 52(4), 555-568. https://doi.org/10.1007/s11029-016-9606-z.
  17. Bouakaz K., Tahar, H.D., Meftah, S.A., Ameur, M. and Adda Bedia, E.A. (2014), "A numerical analysis of steel beams strengthened with composite materials", Mech. Compos. Mater., 50(4), 685-696. https://doi.org/10.1007/s11029-014-9435-x.
  18. Cao, G. and Chen, X. (2006), "The effect of the displacement increment on the axial compressive buckling behaviours of single-walled carbon nanotubes", Nanotechnol., 17(15), 3844. https://doi.org/10.1088/0957-4484/17/15/040
  19. Chaded, A., Tahar, H.D., Abderezak, R., Belkacem, A., Abbes, B., Rabia, B. and Abbes, F. (2017), "A high-order closed-form solution for interfacial stresses in externally sandwich FGM plated RC beams", Adv. Mater. Res., 6(4), 317-328. https://doi.org/10.12989/amr.2017.6.4.317.
  20. Charlier, J.C. Blase, X. and Roche, S. (2007), "Electronic and transport properties of nanotubes", Rev. Mod. Phys., 79(2), 677-732. https://doi.org/10.1103/RevModPhys.79.677.
  21. Chen, W.J. and Li, X.P. (2015), "Size-dependent free vibration analysis of composite laminated Timoshenko beam based on new modified couple stress theory", Arch. Appl. Mech., 83(3), 431-444. https://doi.org/10.1007/s00419-012-0689-2.
  22. Civalek, O. (2013), "Nonlinear dynamic response of laminated plates resting on nonlinear elastic foundations by the discrete singular convolution-differential quadrature coupled approaches", Compos. Part B, 50, 171-179. https://doi.org/10.1016/j.compositesb.2013.01.027.
  23. Civalek, O. (2017), "Free vibration of carbon nanotubes reinforced (CNTR) and functionally graded shells and plates based on FSDT via discrete singular convolution method", Compos. Part B, 111, 45-59. https://doi.org/10.1016/j.compositesb.2016.11.030.
  24. Civalek, O. and Demir, C. (2011), "Buckling and bending analyses of cantilever carbon nanotubes using the Euler-Bernoulli beam theory based on non-local continuum model", Asian J. Civil Eng., 12(5), 651-661.
  25. Civalek, O., Korkmaz, A. and Demir, C. (2010), "Discrete singular convolution approach for buckling analysis of rectangular Kirchhoff plates subjected to compressive loads on two-opposite edges", Adv. Eng. Softw., 41(4), 557-560. https://doi.org/10.1016/j.advengsoft.2009.11.002.
  26. Demir, C., Mercan, K. and Civalek, O. (2016), "Determination of critical buckling loads of isotropic, FGM and laminated truncated conical panel", Compos. Part B, 94, 1-10. https://doi.org/10.1016/j.compositesb.2016.03.031.
  27. Eringen, A.C. (1972), "Nonlocal polar elastic continua", Int. J. Eng. Sci., 10(1), 1-16. https://doi.org/10.1016/0020-7225(72)90070-5.
  28. Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803.
  29. Girifalco L.A. and Lad, R.A. (1956), "Energy of cohesion, compressibility, and the potential energy functions of the graphite system", J. Chem. Phys., 25(4), 693-697. https://doi.org/10.1063/1.1743030.
  30. Girifalco, L.A. (1991), "Interaction potential for carbon (C60) molecules", J. Chem. Phys., 95(14), 5370-5371. https://10.1021/j100167a002.
  31. Grujicic, M., Cao, G., Pandurangana, B. and Royb, W.N. (2005), "Finite element analysis-based design of a fluid-flow control nano-valve", Mater. Sci. Eng. B, 117(1), 53-61. https://doi.org/10.1016/j.mseb.2004.10.020.
  32. Hao, X., Qiang, H. and Xiaohu, Y. (2008), "Buckling of defective single-walled and double-walled carbon nanotubes under axial compression by molecular dynamics simulation", Compos. Sci. Technol., 68(7-8), 1809-1814. https://doi.org/10.1016/j.compscitech.2008.01.013.
  33. He, X.Q., Kitipornchai, S., Wang, C.M. and Liew, K.M. (2005), "Modeling of van der Waals force for infinitesimal deformation of multi-walled carbon nanotubes treated as cylindrical shells", Int. J. Sol. Struct., 42(23), 6032-6047. https://doi.org/10.1016/j.ijsolstr.2005.03.045.
  34. Heireche, H., Tounsi, A., Benzair, A. and Mechab, I. (2008), "Sound wave propagation in single-walled carbon nanotubes with initial axial stress", J. Appl. Phys., 104(1), 014301. https://doi.org/10.1063/1.2949274.
  35. Heireche, H., Tounsi, A., Benzair, A., Maachou, M., Adda Bedia, E.A. (2009), "Sound wave propagation in single-walled carbon nanotubes using nonlocal elasticity", Phys. E, 40(8), 2791-2799. https://doi.org/10.1016/j.physe.2007.12.021.
  36. Ho, Y.H., Chang, C.P., Shyu, F.L., Chen, R.B., Chen, S.C. and Lin, M.F. (2004), "Electronic and optical properties of doublewalled armchair carbon nanotubes", Carb., 42(15), 3159-3167. https://doi.org/10.1016/j.carbon.2004.07.027.
  37. Khalifa, Z., Hadji, L., Tahar, H.D. and Bourada, M. (2018), "Buckling response with stretching effect of carbon nanotubereinforced composite beams resting on elastic foundation", Struct. Eng. Mech., 67(2), 125-130. https://10.12989/sem.2018.67.2.125.
  38. Larbi Chaht, F., Kaci, A., Houari, M.S.A., Tounsi, A., Anwar Beg, O. and Mahmoud, S.R. (2015), "Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect", Steel Compos. Struct., 18(2), 425-442. https://doi.org/10.12989/scs.2015.18.2.425.
  39. Lijima S., Brabec, C., Maiti, A. and Bernholc, J. (1996), "Structural flexibility of carbon nanotubes", J. Chem. Phys., 104(5), 2089-2092. https://doi.org/10.1063/1.470966.
  40. Lim, C.W. (2010), "Is a nanorod (or nanotube) with a lower Young's modulus stiffer? Is not Young's modulus a stiffness indicator", Sci. Chin. Phys. Mech. Astronom., 53(4), 712-724. https://doi.org/10.1007/s11433-010-0170-6.
  41. Mercan, K. and Civalek, O. (2016), "DSC method for buckling analysis of boron nitride nanotube (BNNT) surrounded by an elastic matrix", Compos. Struct., 143, 300-309. https://doi.org/10.1016/j.compstruct.2016.02.040.
  42. Mercan, K. and Civalek, O. (2017), "Buckling analysis of Silicon carbide nanotubes (SiCNTs) with surface effect and nonlocal elasticity using the method of HDQ", Compos. Part B, 114, 34-45. https://doi.org/10.1016/j.compositesb.2017.01.067.
  43. Murmu, T. and Adhikari, S. (2010), "Nonlocal transverse vibration of double-nanobeam-systems", J. Appl. Phys., 108(8), 083514. https://doi.org/10.1063/1.3496627.
  44. Postma H.W.C., Teepen, T., Yao, Z., Grigoni, M. and Dekker, C. (2001), "Carbon nanotube single-electron transistors at room temperature", Sci., 293(5527), 76-79. https://10.1126/science.1061797.
  45. Rabahi, A., Tahar, H.D., Abbes, B. and Adim, B. (2016), "Analytical and numerical solution of the interfacial stress in reinforced-concrete beams reinforced with bonded prestressed composite plate", J. Reinf. Plast. Compos., 35(3), 258-272. https://doi.org/10.1177/0731684415613633.
  46. Rabahi, A., Tahar, H.D., Benferhat, R. and Adim, B. (2017), "Elastic analysis of interfacial stress concentrations in CFRPRC hybrid beams: Effect of creep and shrinkage", Adv. Mater. Res., 6(3), 257-278. https://doi.org/10.12989/amr.2017.6.3.257.
  47. Rabahi, A., Tahar, H.D., Benferhat, R. and Adim, B. (2018), "Nonlinear analysis of damaged RC beams strengthened with glass fiber reinforced polymer plate under symmetric loads", Earthq. Struct., 15(2), 113-122. https://doi.org/10.12989/eas.2018.15.2.113.
  48. Ranjbartoreh, A.R., Ghorbanpour, A. and Soltani, B. (2007), "Double-walled carbon nanotube with surrounding elastic medium under axial pressure", Phys. E, 39(2), 230-239. https://doi.org/10.1016/j.physe.2007.04.010.
  49. Saito, R., Matsuo, R., Kimura, T., Dresselhaus, G. and Dresselhaus, M.S. (2001), "Anomalous potential barrier of double-wall carbon nanotubes", Chem. Phys. Lett., 348(3-4), 187-193. https://doi.org/10.1016/S0009-2614(01)01127-7.
  50. Sears, A. and Batra, R.C. (2006), "Buckling of multiwalled carbon nanotubes under axial compression", Phys. Rev. B, 73(8), 085410. https://doi.org/10.1103/PhysRevB.73.085410.
  51. Shahba, A., Attarnejada, R. and Hajilar, S. (2011), "Free vibration and stability of axially functionally graded tapered Euler-Bernoulli beams", Shock Vibr., 18(5), 683-696. http://dx.doi.org/10.3233/SAV-2010-0589
  52. Simsek, M. (2011), "Forced vibration of an embedded singlewalled carbon nanotube traversed by a moving load using nonlocal Timoshenko beam theory", Steel Compos. Struct., 11(1), 59-76. https://doi.org/10.12989/scs.2011.11.1.059.
  53. Solares S.D., Blanco, M. and Goddard III, W.A. (2004), "Design of a nanomechanical fluid control valve based on functionalized silicon cantilevers: Coupling molecular mechanics with classical engineering design", Nanotechnol., 15(11), 1405. https://doi.org/10.1088/0957-4484/15/11/004
  54. Soto, M., Boyer, T.A., Biradar, S., Ge, L., Vajtai, R., Elias-Zuniga, A., Ajayan, P.M. and Barrera, E.V. (2015), "Effect of interwall interaction on the electronic structure of double-walled carbon nanotubes", Nanotechnol., 26(16), 165201. https//:10.1088/0957-4484/26/16/165201.
  55. Sudak, L.J. (2003), "Column buckling of multiwalled carbon nanotubes using nonlocal continuum mechanics", J. Appl. Phys., 94(11), 7281-7287. https://doi.org/10.1063/1.1625437.
  56. Tahar, H.D. (2017), "Analytical and numerical modeling of interfacial stresses in beams bonded with a thin plate", Adv. Comput. Des., 2(1), 57-69. https://doi.org/10.12989/ACD.2017.2.1.057
  57. Tahar, H.D. and Adim, B. (2016), "Theoretical analysis of composite beams under uniformly distributed load", Adv. Mater. Res., 5(1), 1-9. https://doi.org/10.12989/amr.2016.5.1.001.
  58. Tahar, H.D. and Belkacem, A. (2017), "Mechanical behaviour of FGM sandwich plates using a quasi-3Dhigher order shear and normal deformation theory", Struct. Eng. Mech., 61(1), 49-63. https://10.12989/sem.2017.61.1.049.
  59. Tahar, H.D., Rabahi, A., Abbes, B. and Adim, B. (2016), "Theoretical and finite element studies of interfacial stresses in reinforced concrete beams strengthened by externally FRP laminates plate", J. Adhes. Sci. Technol., 30(12), 1253-1280. https://doi.org/10.1080/01694243.2016.1140703.
  60. Tison, Y., Giusca, C.E., Stolojan, V., Hayashi, Y. and Silva, R.P. (2008), "The inner shell influence on the electronic structure of double-walled carbon nanotubes", Adv. Mater., 20(1), 189-194. https://doi.org/10.1002/adma.200700399.
  61. Tokio, Y. (1995), "Recent development of carbon nanotube", Synth Met., 70(1-3), 1511-1518. https://doi.org/10.1016/0379-6779(94)02939-V.
  62. Tounsi, A., Houari, M.S.A., Benyoucef, S. and Adda Bedia, E.A. (2013), "A refined trigonometric shear deformation theory for thermoelastic bending of functionally graded sandwich plates", Aerosp. Sci. Technol., 24(1), 209-220. https://doi.org/10.1016/j.ast.2011.11.009.
  63. Tsiatas, G.C. (2014), "A new efficient method to evaluate exact stiffness and mass matrices of non-uniform beams resting on an elastic foundation", Arch. Appl. Mech., 84(5), 615-623. https://doi.org/10.1007/s00419-014-0820-7.
  64. Tu, Z.C. and Ou-Yang, Z.C. (2002), "Single-walled and multiwalled carbon nanotubes viewed as elastic tubes with the effective Young's modulus dependent on layer number", Phys. Rev. B, 65(23), 233407. https://doi.org/10.1103/PhysRevB.65.233407.
  65. Wang, C.Y., Ru, C.Q. and Mioduchowski, A. (2003), "Axially compressed buckling of pressured multiwall carbon nanotubes", Int. J. Sol. Struct., 40(15), 3893-3911. https://doi.org/10.1016/S0020-7683(03)00213-0.
  66. Wang, Q. and Wang, C.M. (2007), "The constitutive relation and small scale parameter of nonlocal continuum mechanics for modelling carbon nanotubes", Nanotechnol., 18(7), 075702. https://doi.org/10.1088/0957-4484/18/7/075702
  67. Wei, J., Zhu, H., Jiang, B., Ci, L. and Dehai, W.E. (2003), "Electronic properties of double-walled carbon nanotube films", Carb., 41(13), 2495-2500. https://doi.org/10.1016/S0008-6223(03)00295-1.
  68. Wu, Y., Zhang, X., Leung, A.Y.T. and Zhong, W. (2006), "An energy-equivalent model on studying the mechanical properties of single-walled carbon nanotubes", Thin-Wall. Struct., 44(6), 667-676. https://doi.org/10.1016/j.tws.2006.05.003.
  69. Yan, Y., He, X.Q., Zhang, L.X. and Wang, C.M, (2010), "Nonlocal effect on axially compressed buckling of triplewalled carbon nanotubes under temperature field", Appl. Math. Model., 34(11), 3422-3429. https://doi.org/10.1016/j.apm.2010.02.031.
  70. Yan, Y., He, X.Q., Zhang, L.X. and Wang, C.M. (2009), "Dynamic behavior of triple-walled carbon nanotubes conveying fluid", J. Sound Vibr., 319(3-5), 1003-1018. https://doi.org/10.1016/j.jsv.2008.07.001.
  71. Zemri, A., Houari, M.S.A., Bousahla, A.A. and Tounsi, A. (2015), "A mechanical response of functionally graded nanoscale beam: An assessment of a refined nonlocal shear deformation theory beam theory", Struct. Eng. Mech., 54(4), 693-710. https://doi.org/10.12989/sem.2015.54.4.693.
  72. Zhang, Y.Q., Liu, G.R. and Wang, J.S. (2004), "Small-scale effects on buckling of multiwalled carbon nanotubes under axial compression", Phys. Rev. B, 70(20), 205430. https://doi.org/10.1103/PhysRevB.70.205430.
  73. Zhang, Y.Q., Liu, G.R. and Xie, X.Y. (2005), "Free transverse vibrations of double-walled carbon nanotubes using a theory of nonlocal elasticity", Phys. Rev. B, 71(19), 195404. https://doi.org/10.1103/PhysRevB.71.195404.
  74. Zhou, Y. (2008), "Nanotubes: A new carrier for drug delivery systems", Open Nanosci. J 2, 1-5. DOI: 10.2174/1874140100802010001.
  75. Zidour, M., Daouadji, T.H., Benrahou, K.H., Tounsi, A., Adda Bedia, E.A. and Hadji, L. (2014), "Buckling analysis of chiral single walled carbon nanotubes by the nonlocal Timoshenko beam theory", Mech. Compos. Mater., 50(1), 95-104. https://doi.org/10.1007/s11029-014-9396-0

Cited by

  1. Buckling behavior of a single-layered graphene sheet resting on viscoelastic medium via nonlocal four-unknown integral model vol.34, pp.5, 2019, https://doi.org/10.12989/scs.2020.34.5.643
  2. Effects of hygro-thermo-mechanical conditions on the buckling of FG sandwich plates resting on elastic foundations vol.25, pp.4, 2019, https://doi.org/10.12989/cac.2020.25.4.311
  3. Physical stability response of a SLGS resting on viscoelastic medium using nonlocal integral first-order theory vol.37, pp.6, 2019, https://doi.org/10.12989/scs.2020.37.6.695