DOI QR코드

DOI QR Code

A Study on the Flow Characteristics of the Flue Gas Recirculation with the Change of Venturi Tube Shape

벤튜리관 형상에 따른 배기가스 재순환 유동 특성에 관한 연구

  • Received : 2018.10.12
  • Accepted : 2019.01.03
  • Published : 2019.02.28

Abstract

Exhaust gas recirculation method is widely used among various methods for reducing nitrogen oxides in automobile engines and incinerators. In the present study, the computational fluid dynamic analysis was accomplished to derive the optimal location of air nozzle exit position by changing its position in a venturi tube for the maximum flue gas recirculation effect. In addition, the flue gas recirculation characteristics with a cone at the exit of air nozzle was elucidated with flue gas recirculation flow rate ratio and mixed gas exit temperature. When the air nozzle exit position was changed from the start position (z = 0) to the end position (z = 0.6m) of the exhaust gas recirculation exit pipe, the change of streamline and temperature distribution in the venturi tube was observed. The exhaust gas recirculation flow rate and the average temperature at the mixed gas exit position was quantitatively compared. From the present study, the optimal location of air nozzle exit position for the maximum flue gas recirculation flow rate ratio and maximum mixed gas exit temperature is z = 0.15m (1/4L). In addition, when the cone is installed at the outlet of the air nozzle, the velocity of the air nozzle outlet is increased, the flue gas recirculation flow rate was increased by about 2 times of the flow rate without cone, and the mixed gas exit temperature is increased by $116^{\circ}C$.

자동차 엔진이나 소각로 등의 연소기기에서 질소산화물을 저감하기 위한 여러 가지 방법 중에 배기가스 재순환 방법이 널리 쓰이고 있다. 본 연구에서는 고온의 배기가스를 재순환 유입하기 위해 벤튜리 튜브를 사용할 경우에 상온의 공기 노즐 출구 위치를 변화하여 고온의 배기가스를 재순환 유입하는 최적 위치를 도출하기 위해 전산 열유체해석을 통해 살펴보았다. 또한 상온의 공기 노즐 출구에 원뿔을 설치한 경우에 대한 배기가스 재순환 유입량 특성을 고찰하였다. 공기 노즐 출구 위치를 배기가스 재순환 유입 출구의 시작위치(z=0)에서 끝 위치(z=0.6m)로 변화하였을 때 유선과 온도 분포 변화를 관찰하였으며 배기가스 재순환 유입량비와 혼합가스 출구의 평균온도로 정량적으로 비교하였다. 본 연구를 통하여 상온의 공기 노즐 출구 위치는 z=0.15m(1/4L)에서 재순환 유입량과 출구에서의 평균온도가 가장 최대가 되는 것을 알 수 있었다. 또한 공기 노즐 출구에 원뿔을 설치하면 공기 노즐 출구의 속도가 증가하여 배기가스 재순환 유입량이 약 2배 증가하고 혼합가스 출구 온도도 $116^{\circ}C$ 증가하는 것을 알 수 있었다.

Keywords

GSGSBE_2019_v23n1_12_f0001.png 이미지

Fig. 1. Geometry configuration of flue gas recirculation venturi tubes. (a) venturi tube without cone, (b) venturi tube with cone.

GSGSBE_2019_v23n1_12_f0002.png 이미지

Fig. 2. Streamlines with the change of air nozzle exit position colored by velocity magnitude.

GSGSBE_2019_v23n1_12_f0003.png 이미지

Fig. 3. Temperature distributions with the change of air nozzle exit position.

GSGSBE_2019_v23n1_12_f0004.png 이미지

Fig. 4. Flue gas entrainment ratio and mixed gas exit temperature with the change of air nozzle exit position.

GSGSBE_2019_v23n1_12_f0005.png 이미지

Fig. 5. Streamlines with the existence of cone at the air nozzle exit position colored by velocity magnitude.

GSGSBE_2019_v23n1_12_f0006.png 이미지

Fig. 6. Temperature distributions with the existence of cone at the air nozzle exit position.

Table 1. Entrained ratio and mixed gas exit temperature with the existence of cone at the air nozzle exit position

GSGSBE_2019_v23n1_12_t0001.png 이미지

References

  1. Kim, K. L., Kim, H. J., Park, B. S., and Kim, J. J., "NOx Emission Characteristics of 100kW Gas Burner by FGR", The Korean Society of Combustion, 1-7,(2010)
  2. Chae, T. Y., Lee, J. W., Jo, G. R., Ryu, C, K., Kang, K. S., and Yang, W., "Reburning Characteristics of Syngas in a 60kW Combustion System", The 47th KOSCO Symposium, 155-158, (2013)
  3. Kim, H, Y., Baek, S. W., Son, H., and Kim, S. W., "Experimental and Numerical Investigation for NOx Reduction with Fuel Lean Reburning System", J. Korean Soc. Combust., 14(2), 18-25, (2009)
  4. Yu, B. H., Kim, J. M., Lee, S. R., Kum, S. M., Lee, C. E. and Son, S. K., "A Basic Study of Combustion System Applying Exhaust Gas Recirculation", The 43th KOSCO Symposium, 437-442, (2011)
  5. Ha, J. S., Shim, S. H.. and Jung, S. H., "A Study on the Flow Characteristics in a MILD Combustion Waste Incinerator with the Change of Flue Gas Recirculation", J. of Energy Engineering, 23(2), 51-57, (2014) https://doi.org/10.5855/ENERGY.2014.23.3.051
  6. Ha, J.S., Shim, S. H., "A Study on the Exhaust Gas Recirculation in a MILD Combustion Furnace by Using the Coanda Nozzle Effect", J. of Kor, Soc. Environ. Eng., 35(12), 967-972, (2013) https://doi.org/10.4491/KSEE.2013.35.12.967
  7. Ha, J.S., Park, C.H., Shim, S. H., Jung, S.H., "A Study of Cold Flow Characteristics of a Flue Gas Recirculation Burner using Coanda Nozzles", J. of Energy Eng., 25(4), 152-158, (2016) https://doi.org/10.5855/ENERGY.2016.25.4.152