DOI QR코드

DOI QR Code

Calculation of the Minimum Charge Weight Required for 100% Personnel Target Lethality inside a Room with a Square Base

바닥 면이 정사각형인 격실 내 100% 인명피해를 위한 최소 화약량 산정

  • Received : 2019.02.01
  • Accepted : 2019.03.29
  • Published : 2019.03.31

Abstract

The probability of lethality of personnel targets inside a room is a key issue at assessing effectiveness of a weapon system. In this study, the minimum charge weight to achieve 100% lethality of personnel targets inside a box-type room is proposed at each side length of a base of a room. A fast running blast wave model is used to simulate the pressure-time histories of the blast generated by an internal explosion inside a room, and Axelsson SP method is used to evaluate the lethality of personnel targets under the blast. 176 different internal explosion scenarios are simulated for cases of TNT weights ranging from 20kg to 170kg inside a room whose square base has a side length ranging from 5m to 15m. A linear model and a charge-density model were developed to predict the minimum charge weight to achieve 100% lethality inside a room given a length of a base of a room.

격실 내 인명 살상확률을 계산하는 문제는 무기체계의 효과분석에 있어서 중요한 문제이다. 본 연구에서는 바닥 면이 정사각형인 직육면체 형태의 격실에서 격실 크기에 따른 인명 살상확률 100%를 만족하는 최소 화약량을 산출하는 식을 개발한다. 내부 폭발로 인해 생성된 폭풍파의 압력 이력은 고속 계산 폭압 모델로 계산하였고, 폭풍파에 노출된 인명의 살상확률은 Axelsson SP 방법론을 적용하여 계산하였다. 한 변의 길이가 5m에서 15m인 정사각형을 바닥 면으로 하는 격실 안에서 무게 20kg에서 170kg의 TNT가 폭발하는 총 176 가지의 시나리오들에 대해 시뮬레이션이 수행되었다. 선형 모델 및 화약밀도기반 모델을 개발하여 표적 격실의 바닥 면의 한 변의 길이에 따른 인명피해 100%를 만족하는 최소 폭약량을 예측하였다.

Keywords

SMROBX_2019_v28n1_109_f0001.png 이미지

Fig. 1. Simulation setting

SMROBX_2019_v28n1_109_f0002.png 이미지

Fig. 2. Simulation flow chart

SMROBX_2019_v28n1_109_f0003.png 이미지

Fig. 3. Pressure-time history of an ideal blast

SMROBX_2019_v28n1_109_f0004.png 이미지

Fig. 4. Pressure-time history generated from BlastX

SMROBX_2019_v28n1_109_f0005.png 이미지

Fig. 5. A chest wall velocity profile under a blast

SMROBX_2019_v28n1_109_f0006.png 이미지

Fig. 6. Chest wall velocities

SMROBX_2019_v28n1_109_f0007.png 이미지

Fig. 7. Lethal areas

SMROBX_2019_v28n1_109_f0008.png 이미지

Fig. 8. Probabilities of personal target lethality

SMROBX_2019_v28n1_109_f0009.png 이미지

Fig. 9. Minimum required charge weights required for 100% lethality for a room with a square base

SMROBX_2019_v28n1_109_f0010.png 이미지

Fig. 10. Minimum charge density required for 100% lethality for a room with a square base

SMROBX_2019_v28n1_109_f0011.png 이미지

Fig. 11. Predictions of the two models on the minimum charge weights required for 100% lethality

Table 1. Simulation parameters

SMROBX_2019_v28n1_109_t0001.png 이미지

Table 2. Types of blast injury

SMROBX_2019_v28n1_109_t0002.png 이미지

Table 3. Parameters used in Axelsson model for a 70kg human

SMROBX_2019_v28n1_109_t0003.png 이미지

Table 4. Injury level, ASII, and chest wall velocity

SMROBX_2019_v28n1_109_t0004.png 이미지

Table 5. RMS errors for the two models

SMROBX_2019_v28n1_109_t0005.png 이미지

Table 6. Comparisons on predictions of the two models

SMROBX_2019_v28n1_109_t0006.png 이미지

References

  1. Axelsson H., Yelverton J.T. (1996), "Chest Wall Velocity Predictor of Nonauditory Blast Injury in a Complex Wave Environment", The Journal of Trauma: Injury, Infection, and Critical Care, Vol. 40, No. 3, pp. 31-37. https://doi.org/10.1097/00005373-199601000-00007
  2. Baker, W. E. (1973). Explosions in Air, University of Texas Press, Austin
  3. Bowen I. G., et al. (1965) "Estimate of Man's Tolerance to the Direct Effects of Air Blasts" Technical Progress Report, DASA-2113. Defense Atomic Agency, Department of Defense, Washington, D.C.
  4. Britt J., Mcmahon G. (2008) "Tabular Explosive Source Models used in BlastX" Proceeding of the 20th International Symposium on Military Aspects of Blast and Shock.
  5. "Explosions and Blast Injuries" Department of Health and Human Service. CDC.
  6. Driels M.S. (2012) Weaponeering: Conventional Weapon System Effectivenss, U.S. Naval Postgraduate School, Monterey, California.
  7. Kingery C. N., Bulmash, G. (1984) "Airblast Parameters from TNT Spherical Airburst and Hmispherical Surface Burst," Ballistics Research Lab., ARBRLTR- 02555, Aberdeen Proving Ground, MD.
  8. Park S. (2017) "The Effect of Obstacles in a Compartment onPersonnel Injury Caused by Blast", Journal of the Korea Society for Simulation, Vol. 26, No. 3.
  9. Teland, J.A. (2012) "Review of Blast Injury Prediction Models" FFI/Rapport-2012/00539
  10. TM-5-855-1. (1986) Fundamentals of Protective Design for Conventional Weapons, Washington, D.C.