DOI QR코드

DOI QR Code

초계작전을 위한 공중급유기 적정 대수 산정 연구

A Study on the Optimal Number of Air Tanker for Patrol Operations

  • 투고 : 2018.12.26
  • 심사 : 2019.03.19
  • 발행 : 2019.03.31

초록

공중급유기는 앞으로 공군 작전의 효율성을 높여줄 것으로 기대되고 있다. 공중급유기의 도입으로 전투기의 항속 거리 및 항속 시간이 증가되어 작전 가능 시간이 향상될 것이라 기대되기 때문이다. 그러나 공중급유기를 도입하는데 천문학적인 비용이 들기 때문에 신중한 논의가 필요하지만 아직은 그러한 논의가 부족한 것이 실정이다. 따라서 본 연구에서는 ABM(Agent Based Modeling) 기법을 활용하여 초계작전 시 공중급유기의 적정 대수를 산정하고자 하였다. 시뮬레이션을 구현할 때 실제 대한민국 공군에서 운용하고 있는 항공기의 제원을 입력하여 시뮬레이션의 신뢰성을 높였다. 적정 대수를 산정하기 위한 최적화 툴로써 본 연구에서 사용한 시뮬레이션 툴에 내장되어 있는 OptQuest를 사용하였고 적정 대수 산정결과는 4대이다.

Air refueling is expected to increase the efficiency of the air force operations. This follows from the introduction of air refueling aircraft, which should to increase operational time by increasing the range and duration of fighter jets. Despite the effectiveness of the air refueling air crafts, the astronomical costs of adapting the air tankers call for careful discussions on whether to acquire any air craft and if so, how many. However there is no academic study on the subject to our knowledge. Thus, we use the ABM(Agent Based Modeling) technique to calculate the optimal number of air tankers during patrol operation. We have enhanced the reliability of the simulation by entering the specifications of the current aircraft operated by the Korean Air Force. As an optimization tool for determining the optimal number of counts, we use OptQuest built into the simulation tools and show that the optimal number of air tanker is 4.

키워드

SMROBX_2019_v28n1_57_f0001.png 이미지

Fig. 1. Tanker Route(International Virtual Aviation Organization Data)

SMROBX_2019_v28n1_57_f0002.png 이미지

Fig. 2. Coordinates of Base & Operation Positions

SMROBX_2019_v28n1_57_f0003.png 이미지

Fig. 3. State Chart of Fighter Agent

SMROBX_2019_v28n1_57_f0004.png 이미지

Fig. 4. State Chart of Fighter Agent

SMROBX_2019_v28n1_57_f0005.png 이미지

Fig. 5. State Chart of Tower Agent

SMROBX_2019_v28n1_57_f0006.png 이미지

Fig. 6. State Chart of Base Agent

SMROBX_2019_v28n1_57_f0007.png 이미지

Fig. 7. Simulation Scene Screenshot

SMROBX_2019_v28n1_57_f0008.png 이미지

Fig. 8. Daily Fuel Consumption Trends of Fighters

SMROBX_2019_v28n1_57_f0009.png 이미지

Fig. 9. Optimization Process of OptQuest Screenshot

SMROBX_2019_v28n1_57_f0010.png 이미지

Fig. 10. Result of Optimization Screenshot

Table 1. Fact Sheet of A330-MRTT and F-16

SMROBX_2019_v28n1_57_t0001.png 이미지

Table 2. Engine of A330-MRTT and F-16

SMROBX_2019_v28n1_57_t0002.png 이미지

Table 3. SFC(Specific Fuel Consumption)

SMROBX_2019_v28n1_57_t0003.png 이미지

Table 4. Fuel Consume per Hour(Weight)

SMROBX_2019_v28n1_57_t0004.png 이미지

Table 5. Coordinate of Base & Operation Route

SMROBX_2019_v28n1_57_t0005.png 이미지

참고문헌

  1. Bonabequ, E. (2002). Agent-Based Modeling : Methods and Techniques for Simulating Human Systems, Proceedings of the National Academy of Science 99, Suppl 3, 7280-7287. https://doi.org/10.1073/pnas.082080899
  2. Ciopa, T. M., T. W. Lucas, S. M. Sanchez (2004). Military Applications of Agent-based Simulation, Winter Simulation Conference.
  3. Ham, W. G., Jung, Y. H., Na, J. H., Park, S. C. (2012). A study on Agent Based Simulation System Architecture for the Engagement of Ground Weapon Systems, Journal of the Korea Society for Simulation, 21(4), 81-90. https://doi.org/10.9709/JKSS.2012.21.4.081
  4. Ha, S. H., Moses Busogi, Kim, N. H. (2014). Humanin-the-loop Agent Based Modeling and Simulation, Proceeding of the Korea HCI Conference 2014, 101-104.
  5. Ilanchinski, A. (2004). Artificial War : Multiagent-Based Simulation of Combat, World Scientific Publishers.
  6. Jeon T. B., Sohn, Y. H., Kim, K. D. (2017). Optimal Number of Spare Engines and Modules for Aircraft Types, Journal of the Korea Society for the Simulation, 26(3), 35-46. https://doi.org/10.9709/JKSS.2017.26.3.035
  7. Kim, H. C., Choi, S. C. (2000). A Study of the Optimized Requirement Estimation of K-1 Tank Repair Parts, Military Operations Research Society of Korea, 26(2), 39-54.
  8. Kim, J. H. (2010). A Proposition on Applying Agent-Based Model for Analyzing Logistics System, Journal of the Society for Port Economics, 26(3), 130-142.
  9. Kim, S. M., Lee, M. G. (2014). Military Aircrafts Proper Quantity Decision Model Using Simulation Analysis, Journal of the Korea Society for Simulation, 23(4), 151-161. https://doi.org/10.9709/JKSS.2014.23.4.151
  10. Kim, S. T., Kim, C. W. (2011). Consumer-Agent Based Sensitivity Analysis of Product Diffusion Dynamics for Domestic Automobile Market, Journal of the Korea Society for Simulation, 20(2), 29-40. https://doi.org/10.9709/JKSS.2011.20.2.029
  11. Kim, Y. J. (2015). Applications of Agent-Based Modeling in Political Science : A Critical Review, Peace Studies, 23(1), 443-476.
  12. Lee, D. J., Hong, Y. G. (2007). Agent Based Modeling & Simulation for Command and Control, Journal of the Korea Society for Simulation, 16(3), 39-48.
  13. Lee, J. Y., Kim, J. S., Bae, S. M. Kim, J. M. (2015). Interrelation Analysis of UGV Operational Capability and Combat Effectiveness using AnyLogic Simulation, Journal of Applied Reliability, 15(2), 131-138.
  14. Lee, J. Y., Shin, S. W., Kim, C. M. (2018). Analysis of UGV Effectiveness Based in ABM(Agent Based simulation) and Communication Network Environments, Journal of the Korea Society for Simulation, 27(3), 89-97. https://doi.org/10.9709/JKSS.2018.27.3.089
  15. Lim, J. D. (2009). Analysis of the Operational Effect of the UAV in the Army Corps Level Using D_MAP, Diss, Korea National Defense University.
  16. Macal, C. M. and M. J. North. (2005). Tutiral on agentbased modeling and simulations, Proceedings of the Winter Simulation Conference.
  17. Onggo, B. S., Karatas, M. (2016). Test-driven simulation modeling : A case study using agent-based maritime search-operation simulation, European Journal of Operational Research, 254(2016), 517-531. https://doi.org/10.1016/j.ejor.2016.03.050
  18. Park, H. D. et al. (2010). Principle and Application of GIS, Sigam Press, Seoul.
  19. Park, J. G. (1996). A Study on the Decision of Aircraft Demand for Air to Surface Mission, Diss, Korea National Defense University.
  20. Park, S. H., Kim, T. H., Jung H. J., Choi, W. G. (2018). A study on Air Force Air Transport Route Optimization Using Agent-Based Modeling, Korean Journal of Logistics, 26(3), 59-76. https://doi.org/10.15735/kls.2018.26.3.004
  21. Shin, G. H., Nam, H. C., Lee, Y. W., Lee, T. S. (2012). Communication Modeling of Simulation for Network Centric Warfare Environment, Proceeding of 13th Communication and Computer Science Conference in ADD, 22.
  22. Son, Y. S. (2012). A Model to Evaluate the Aircraft Requirement with Discrete-Time Absorbing Markov Chain, Diss, Korea National Defense University.
  23. Song, C. H. (2004). A Study on the Optimal Allocation of Aircrafts to Closed Air Support By Goal Programming, Diss, Korea National Defense University.
  24. Yoo, G. B. (2008). History of Geographic Information System in 50years, Orbis Sapientiae, 5, 156-171.