DOI QR코드

DOI QR Code

Sinuolinea capsularis (Myxosporea: Sinuolineidae) Isolated from Urinary Bladder of Cultured Olive Flounder Paralichthys olivaceus

  • Shin, Sang Phil (Department of Marine Life Science, Jeju National University) ;
  • Jin, Chang Nam (Department of Marine Life Science, Jeju National University) ;
  • Sohn, Han Chang (Department of Marine Life Science, Jeju National University) ;
  • Lee, Jehee (Department of Marine Life Science, Jeju National University)
  • Received : 2018.11.15
  • Accepted : 2019.03.14
  • Published : 2019.04.30

Abstract

Sinuolinea capsularis Davis, 1917 is myxosporean that infect the urinary system of the host fish. Insufficient morphological and molecular data of S. capsularis exits, and it is therefore difficult to make an accurate identification of the parasite. We tried a series of morphological and molecular analysis to identify an myxosporean isolated from urinary bladder of cultured olive flounder, Paralichthys olivaceus, from Jeju island in the Republic of Korea. Some of them were observed under a light microscope and SEM, and remain samples were used molecular and phylogenetic analysis. Mature spores were subspherical, measuring $13.9{\pm}0.6{\mu}m$ in length and $13.8{\pm}0.8{\mu}m$ in width. Two spherical polar capsules on opposite sides in the middle of the spore had a diameter range of $4.3{\pm}0.4{\mu}m$. Scanning electron microscopy revealed that spores a severely twisted the suture line. By the morphological comparison and analysis, it was identified as S. capsularis. In addition, we obtained the partial 18S rDNA of S. capsularis and first registered it in NCBI. Phylogenetic analysis showed that S. capsularis clustered with Zschokkella subclade infecting the urinary system of marine fish, and it supported the infection site tropism effect on phylogeny of marine myxosporeans as well as the origin of Sinuolinea is not monophyly.

Keywords

References

  1. Lom J, Dykova I. Myxozoan genera: definition and notes on taxonomy, life-cycle terminology and pathogenic species. Folia Parasitol 2006; 53: 1-36. https://doi.org/10.14411/fp.2006.001
  2. Bartosova P, Fiala I, Jirku M, Cinkova M, Caffara M, Fioravanti ML, Atkinson SD, Bartholomew JL, Holzer AS. Sphaerospora sensu stricto: taxonomy, diversity and evolution of a unique lineage of myxosporeans (Myxozoa). Mol Phylogenet Evol 2013; 68: 93-105. https://doi.org/10.1016/j.ympev.2013.02.026
  3. Davis HS. The Myxosporidia of the Beaufort region: a systematic and biologic study. Bull Bur Fish 1917; 35: 201-243.
  4. Vaz Rodrigues M, Francisco CJ, Biondi GF, Junior JP. Sinuolinea niloticus n. sp., a myxozoan parasite that causes disease in Nile tilapia (Oreochromis niloticus). Parasitol Res 2016; 115: 4307-4316. https://doi.org/10.1007/s00436-016-5214-z
  5. Garner MM, Atkinson SD, Hallett SL, Bartholomew JL, Nordhausen RW, Reed H, Adams L, Whitaker B. Renal myxozoanosis in weedy sea dragons, Phyllopteryx taeniolatus (Lacepede), caused by Sinuolinea phyllopteryxa n. sp. J Fish Dis 2018; 31: 27-35. https://doi.org/10.1111/j.1365-2761.2007.00862.x
  6. Kawai T, Sekizuka T, Yahata Y, Kuroda M, Kumeda Y, Iijima Y, Kamata Y, Sugita-Konishi Y, Ohnishi T. Identification of Kudoa septempunctata as the causative agent of novel food poisoning outbreaks in Japan by consumption of Paralichthys olivaceus in raw fish. Clin Infect Dis 2012; 54: 1046-1052. https://doi.org/10.1093/cid/cir1040
  7. Song JY, Choi JH, Choi HS, Jung SH, Park MA. Monitoring of Kudoa septempunctata in cultured olive flounder and wild fish in Jeju Island during 2012. J Fish Pathol 2013; 26: 129-137 (in Korean). https://doi.org/10.7847/jfp.2013.26.3.129
  8. Kim SM, Jun LJ, Park MA, Jeong HD, Jeong JB. Characterization of the myxosporean parasite isolated from emaciated olive flounders Paralichthys olivaceus on Jeju Island. Korean J Fish Aquat Sci 2015; 48: 337-345 (in Korean). https://doi.org/10.5657/KFAS.2015.0337
  9. Sekiya M, Setsuda A, Sato H, Song K, Han JK, Kim GJ, Yeo IK. Enteromyxum leei (Myxosporea: Bivalvulida) as the cause of myxosporean emaciation disease of farmed olive flounders (Paralichthys olivaceus) and a turbot (Scophthalmus maximus) on Jeju Island, Korea. Parasitol Res 2016; 115: 4229-4237. https://doi.org/10.1007/s00436-016-5200-5
  10. Shin SP, Sohn HC, Jin CN, Kang BJ, Lee J. Molecular diagnostics for verifying an etiological agent of emaciation disease in cultured olive flounder Paralichthys olivaceus in Korea. Aquaculture 2018; 493: 18-25. https://doi.org/10.1016/j.aquaculture.2018.04.041
  11. Lom J, Arthur JR. A guideline for the preparation of species descriptions in Myxosporea. J Fish Dis 1989; 12: 151-156. https://doi.org/10.1111/j.1365-2761.1989.tb00287.x
  12. Barta JR, Martin DS, Liberator PA, Dashkevicz M, Anderson JW, Feighner SD, Elbrecht A, Perkins-Barrow A, Jenkins MC, Danforth HD, Ruff MD, Profous-Juchelka H. Phylogenetic relationships among eight Eimeria species infecting domestic fowl inferred using complete small subunit ribosomal DNA sequences. J Parasitol 1997; 83: 262-271. https://doi.org/10.2307/3284453
  13. Fonseca VG, Carvalho GR, Sung W, Johnson HF, Power DM, Neill SP, Packer M, Blaxter ML, Lambshead PJ, Thomas WK, Creer S. Second-generation environmental sequencing unmasks marine metazoan biodiversity. Nat Commun 2010; 1: 98. https://doi.org/10.1038/ncomms1095
  14. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG. Clustal W and Clustal X version 2.0. Bioinformatics 2007; 23: 2947-2948. https://doi.org/10.1093/bioinformatics/btm404
  15. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33: 1870-1874. https://doi.org/10.1093/molbev/msw054
  16. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Soding J, Thompson JD, Higgins DG. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 2011; 7: 539. https://doi.org/10.1038/msb.2011.75
  17. Guindon S, Gascuel O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 2003; 52: 696-704. https://doi.org/10.1080/10635150390235520
  18. Darriba D, Taboada GL, Doallo R, Posada D. jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 2012; 9: 772.
  19. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Hohna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 2012; 61: 539-542. https://doi.org/10.1093/sysbio/sys029
  20. Basikalowa A. Wissenschaftliches Zentralinstitut fur Fischereiwirtschaft. Moscow. 1932, pp 136.
  21. Tripathi YR. Some new Myxosporidia from Plymouth with a proposed new classification of the order. Parasitology 1948; 39: 110-118. https://doi.org/10.1017/S0031182000083633
  22. Zhao Y, Song W. Studies on the morphology and taxonomy of three new myxosporeans of the genus Sinuolinea Davis, 1917 (Myxosporea: Sinuolineidae) infecting the urinary bladder of some marine fishes from the Shandong coast, China. Syst Parasitol 2003; 55: 53-59. https://doi.org/10.1023/A:1023986331078
  23. Moran JDW, Whitaker DJ, Kent ML. A review of the myxosporean genus Kudoa Meglitsch, 1947, and its impact on the international aquaculture industry and commercial fisheries. Aquaculture 1999; 172: 163-196. https://doi.org/10.1016/S0044-8486(98)00437-2
  24. Sitja-Bobadilla A, Palenzuela O. Enteromyxum species. In Woo, PTK, Buchmann, K eds, Fish Parasites: Pathobiology and Protection. Wallingford, UK. CABI. 2012, pp 163-176.
  25. Whipps CM, Kent ML. Phylogeography of the cosmopolitan marine parasite Kudoa thyrsites (Myxozoa: Myxosporea). J Eukaryot Microbiol 2006; 53: 364-373. https://doi.org/10.1111/j.1550-7408.2006.00114.x
  26. Burger MA, Adlard RD. Low host specificity in the Kudoidae (Myxosporea: Multivalvulida) including seventeen new host records for Kudoa thalassomi. Folia Parasitol 2011; 58: 1-16. https://doi.org/10.14411/fp.2011.001
  27. Yanagida T. Myxosporean emaciation disease. Fish Pathol 2017; 52: 63-67. https://doi.org/10.3147/jsfp.52.63
  28. Shin SP, Jin CN, Sohn HC, Lee J. Parvicapsula curvatura n. sp. in cultured olive flounder Paralichthys olivaceus and phylogenetic characteristics of Parvicapsula genus. Dis Aquat Organ 2018; 130: 199-207. https://doi.org/10.3354/dao03276
  29. Hillis DM, Dixon MT. Ribosomal DNA: molecular evolution and phylogenetic inference. Q Rev Biol 1991; 66: 411-453. https://doi.org/10.1086/417338
  30. Bartosova P, Fiala I, Hypsa V. Concatenated SSU and LSU rDNA data confirm the main evolutionary trends within myxosporeans (Myxozoa: Myxosporea) and provide an effective tool for their molecular phylogenetics. Mol Phylogenet Evol 2009; 53: 81-93. https://doi.org/10.1016/j.ympev.2009.05.018
  31. Dykova I, Kodadkova A, de Buron I, Fiala I, Roumillat WA. Sinuolinea infections in the urinary system of Cynoscion species (Sciaenidae) and phylogenetic position of the type species of Sinuolinea Davis, 1917 (Myxozoa: Myxosporea). Int J Parasitol Parasites Wildl 2013; 2: 10-17. https://doi.org/10.1016/j.ijppaw.2012.11.004
  32. Blaxter ML, De Ley P, Garey JR, Liu LX, Scheldeman P, Vierstraete A, Vanfleteren JR, Mackey LY, Dorris M, Frisse LM, Vida JT, Thomas WK. A molecular evolutionary framework for the phylum Nematoda. Nature 1998; 392: 71-75. https://doi.org/10.1038/32160
  33. Fiala I, Hlavnickova M, Kodadkova A, Freeman MA, Bartosova-Sojkova P, Atkinson SD. Evolutionary origin of Ceratonova shasta and phylogeny of the marine myxosporean lineage. Mol Phylogenet Evol 2015; 86: 75-89. https://doi.org/10.1016/j.ympev.2015.03.004
  34. Bartosova P, Freeman MA, Yokoyama H, Caffara M, Fiala I. Phylogenetic position of Sphaerospora testicularis and Latyspora scomberomori n. gen. n. sp. (Myxozoa) within the marine urinary clade. Parasitology 2011; 138: 381-393. https://doi.org/10.1017/S0031182010001381
  35. Holzer AS, Sommerville C, Wootten R. Molecular relationships and phylogeny in a community of myxosporeans and actinosporeans based on their 18S rDNA sequences. Int J Parasitol 2004; 34: 1099-1111. https://doi.org/10.1016/j.ijpara.2004.06.002
  36. Fiala I. The phylogeny of Myxosporea (Myxozoa) based on small subunit ribosomal RNA gene analysis. Int J Parasitol 2006; 36: 1521-1534. https://doi.org/10.1016/j.ijpara.2006.06.016
  37. Shin SP, Nguyen VG, Jeong JM, Jun JW, Kim JH, Han JE, Baeck GW, Park SC. The phylogenetic study on Thelohanellus species (Myxosporea) in relation to host specificity and infection site tropism. Mol Phylogenet Evol 2014; 72: 31-34. https://doi.org/10.1016/j.ympev.2014.01.002
  38. Shin SP, Shirakashi S, Hamano S, Kato K, Lasso LT, Yokoyama H. Phylogenetic study of the genus Kudoa (Myxozoa: Multivalvulida) with a description of Kudoa rayformis sp. nov. from the trunk muscle of Pacific sierra Scomberomorus sierra. Mol Phylogenet Evol 2016; 98: 337-345. https://doi.org/10.1016/j.ympev.2016.02.019
  39. Kent ML, Andree KB, Bartholomew JL, El-Matbouli M, Desser SS, Devlin RH, Feist SW, Hedrick RP, Hoffmann RW, Khattra J, Hallett SL, Lester RJ, Longshaw M, Palenzeula O, Siddall ME, Xiao C. Recent advances in our knowledge of the Myxozoa. J Eukaryot Microbiol 2001; 48: 395-413. https://doi.org/10.1111/j.1550-7408.2001.tb00173.x

Cited by

  1. Kudoa ogawai (Myxosporea: Kudoidae) Infection in Cultured Olive Flounder Paralichthys olivaceus vol.57, pp.4, 2019, https://doi.org/10.3347/kjp.2019.57.4.439
  2. A new species Myxodavisia jejuensis n. sp. (Myxosporea: Sinuolineidae) isolated from cultured olive flounder Paralichthys olivaceus in South Korea vol.118, pp.11, 2019, https://doi.org/10.1007/s00436-019-06454-z
  3. Identification and characterization of Sinuolinea niloticus from Nile tilapia (Oreochromis niloticus) farmed in Botucatu, Brazil vol.28, pp.5, 2020, https://doi.org/10.1007/s10499-020-00565-6