DOI QR코드

DOI QR Code

Validation of housekeeping genes as candidate internal references for quantitative expression studies in healthy and nervous necrosis virus-infected seven-band grouper (Hyporthodus septemfasciatus)

  • Krishnan, Rahul (Department of Aqualife Medicine, College of Fisheries and Ocean Science, Chonnam National University) ;
  • Qadiri, Syed Shariq Nazir (Department of Aqualife Medicine, College of Fisheries and Ocean Science, Chonnam National University) ;
  • Kim, Jong-Oh (Institute of Marine Biotechnology, Pukyong National University) ;
  • Kim, Jae-Ok (National Institute of Fisheries Science) ;
  • Oh, Myung-Joo (Department of Aqualife Medicine, College of Fisheries and Ocean Science, Chonnam National University)
  • Received : 2019.06.17
  • Accepted : 2019.10.31
  • Published : 2019.12.31

Abstract

Background: In the present study, we evaluated four commonly used housekeeping genes, viz., actin-β, elongation factor-1α (EF1α), acidic ribosomal protein (ARP), and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) as internal references for quantitative analysis of immune genes in nervous necrosis virus (NNV)-infected seven-band grouper, Hyporthodus septemfasciatus. Methods: Expression profiles of the four genes were estimated in 12 tissues of healthy and infected seven-band grouper. Expression stability of the genes was calculated using the delta Ct method, BestKeeper, NormFinder, and geNorm algorithms. Consensus ranking was performed using RefFinder, and statistical analysis was done using GraphpadPrism 5.0. Results: Tissue-specific variations were observed in the four tested housekeeping genes of healthy and NNV-infected seven-band grouper. Fold change calculation for interferon-1 and Mx expression using the four housekeeping genes as internal references presented varied profiles for each tissue. EF1α and actin-β was the most stable expressed gene in tissues of healthy and NNV-infected seven-band grouper, respectively. Consensus ranking using RefFinder suggested EF1α as the least variable and highly stable gene in the healthy and infected animals. Conclusions: These results suggest that EF1α can be a fairly better internal reference in comparison to other tested genes in this study during the NNV infection process. This forms the pilot study on the validation of reference genes in Hyporthodus septemfasciatus, in the context of NNV infection.

Keywords

References

  1. Andersen CL, Jensen JL, Orntoft TF. Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 2004;64(15):5245-50. https://doi.org/10.1158/0008-5472.CAN-04-0496
  2. Bustin SA. Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J Mol Endocrinol. 2000;25(2):169-93. https://doi.org/10.1677/jme.0.0250169
  3. Bustin SA, Benes V, Nolan T, Pfaffl MW. Quantitative real-time RT-PCR-a perspective. J Mol Endocrinol. 2005;34(3):597-601. https://doi.org/10.1677/jme.1.01755
  4. Casadei R, Pelleri MC, Vitale L, Facchin F, Lenzi L, Canaider S, Strippoli P, Frabetti F. Identification of housekeeping genes suitable for gene expression analysis in the zebrafish. Gene Expression Patterns. 2011;11(3-4):271-6. https://doi.org/10.1016/j.gep.2011.01.003
  5. Dheda K, Huggett JF, Bustin SA, Johnson MA, Rook G, Zumla A. Validation of housekeeping genes for normalizing RNA expression in real-time PCR. Biotechniques. 2004;37(1):112-9. https://doi.org/10.2144/04371RR03
  6. Fernandes JM, Mommens M, Hagen O, Babiak I, Solberg C. Selection of suitable reference genes for real-time PCR studies of Atlantic halibut development. Comp Biochem Physiol. Part B: Biochem. Mol. Biol. 2008;150(1):23-32. https://doi.org/10.1016/j.cbpb.2008.01.003
  7. Heemstra, P.C., JE Randall. 1993. FAO species catalogue. Vol. 16. Groupers of the world. (Family Serranidae, Subfamily Epinephelinae). An annotated and illustrated catalogue of the grouper, rockcod, hind, coral grouper and lyretail species known to date. FAO Fish. Synops, 125.
  8. Huang W, Zhou L, Li Z, Gui JF. Expression pattern, cellular localization and promoter activity analysis of ovarian aromatase (Cyp19a1a) in protogynous hermaphrodite red-spotted grouper. Mol Cell Endocrinol. 2009;307(1-2):224-36. https://doi.org/10.1016/j.mce.2009.04.003
  9. Huggett J, Dheda K, Bustin S, Zumla A. Real-time RT-PCR normalisation; strategies and considerations. Genes Immun. 2005;6(4):279. https://doi.org/10.1038/sj.gene.6364190
  10. Ingerslev HC, Pettersen EF, Jakobsen RA, Petersen CB, Wergeland HI. Expression profiling and validation of reference gene candidates in immune relevant tissues and cells from Atlantic salmon (Salmo salar L.). Mol. Immunol. 2006;43(8):1194-201. https://doi.org/10.1016/j.molimm.2005.07.009
  11. Jorgensen SM, Kleveland EJ, Grimholt U, Gjoen T. Validation of reference genes for real-time polymerase chain reaction studies in Atlantic salmon. Mar. Biotechnol. 2006;8(4):398-408. https://doi.org/10.1007/s10126-005-5164-4
  12. Kim CS, Kim WS, Nishizawa T, Oh MJ. Prevalence of viral nervous necrosis (VNN) in sevenband grouper Epinephelus septemfasciatus farms. J. Fish Pathol. 2012;25(2):111-6. https://doi.org/10.7847/jfp.2012.25.2.111
  13. Kim JO, Kim JO, Kim WS, Oh MJ. Characterization of the transcriptome and gene expression of brain tissue in sevenband grouper (Hyporthodusseptemfasciatus) in response to NNV infection. Genes. 2017;8(1):31. https://doi.org/10.3390/genes8010031
  14. Li Z, Yang L, Wang J, Shi W, Pawar RA, Liu Y, Xu C, Cong W, Hu Q, Lu T, Xia F. $\beta$-Actin is a useful internal control for tissue-specific gene expression studies using quantitative real-time PCR in the half-smooth tongue sole Cynoglossus semilaevis challenged with LPS or Vibrio anguillarum. Fish Shellfish Immunol. 2010;29(1):89-93. https://doi.org/10.1016/j.fsi.2010.02.021
  15. Liu Q, Lu H, Zhang L, Xie J, Shen W, Zhang W. Homologues of sox8 and sox10 in the orange-spotted grouper Epinepheluscoioides: sequences, expression patterns, and their effects on cyp19a1a promoter activities in vitro. Comp Biochem Physiol. Part B: Biochem. Mol. Biol. 2012;163(1):86-95. https://doi.org/10.1016/j.cbpb.2012.05.004
  16. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-${\Delta}{\Delta}CT$ method. Methods. 2001;25:402-408. https://doi.org/10.1006/meth.2001.1262
  17. Luo YS, Hu W, Liu XC, Lin HR, Zhu ZY. Molecular cloning and mRNA expression pattern of Sox9 during sex reversal in orange-spotted grouper (Epinepheluscoioides). Aquaculture. 2010;306(1-4):322-8. https://doi.org/10.1016/j.aquaculture.2010.06.019
  18. McCurley AT, Callard GV. Characterization of housekeeping genes in zebrafish: male-female differences and effects of tissue type, developmental stage and chemical treatment. BMC Mol Biol. 2008;9(1):102. https://doi.org/10.1186/1471-2199-9-102
  19. Meng QW, Su JX, Miao XZ. Systematics of fish China Agriculture Press. Beijing, China. 1995:606-22.
  20. Mitter K, Kotoulas G, Magoulas A, Mulero V, Sepulcre P, Figueras A, Novoa B, Sarropoulou E. Evaluation of candidate reference genes for QPCR during ontogenesis and of immune-relevant tissues of European seabass (Dicentrarchuslabrax). Comp Biochem Physiol. Part B: Biochem. Mol. Biol. 2009;153(4):340-7. https://doi.org/10.1016/j.cbpb.2009.04.009
  21. Olsvik PA, Lie KK, Jordal AEO, Nilsen TO, Hordvik I. Evaluation of potential reference genes in real-time RT-PCR studies of Atlantic salmon. BMC Mol Biol. 2005;6(1):21. https://doi.org/10.1186/1471-2199-6-21
  22. Overgard AC, Nerland AH, Patel S. Evaluation of potential reference genes for real time RT-PCR studies in Atlantic halibut (HippoglossusHippoglossus L.); during development, in tissues of healthy and NNV-injected fish, and in anterior kidney leucocytes. BMC Mol Biol. 2010;11(1):36. https://doi.org/10.1186/1471-2199-11-36
  23. Paria A, Dong J, Babu PP, Makesh M, Chaudhari A, Thirunavukkarasu AR, Purushothaman CS, Rajendran KV. Evaluation of candidate reference genes for quantitative expression studies in Asian seabass (Latescalcarifer) during ontogenesis and in tissues of healthy and infected fishes. Indian J Exp Biol. 2016;54:597-605.
  24. Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper-Excel-based tool using pair-wise correlations. Biotechnol Lett. 2004;26(6):509-15. https://doi.org/10.1023/B:BILE.0000019559.84305.47
  25. Purohit GK, Mahanty A, Mohanty BP, Mohanty S. Evaluation of housekeeping genes as references for quantitative real-time PCR analysis of gene expression in the murrel Channa striatus under high-temperature stress. Fish PhysiolBiochem. 2016;42(1):125-35.
  26. Radonic A, Thulke S, Mackay IM, Landt O, Siegert W, Nitsche A. Guideline to reference gene selection for quantitative real-time PCR. BiochemBiophys Res Commun. 2004;313(4):856-62. https://doi.org/10.1016/j.bbrc.2003.11.177
  27. Silver N, Best S, Jiang J, Thein SL. Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR. BMC Mol Biol. 2006;7(1):33. https://doi.org/10.1186/1471-2199-7-33
  28. Su J, Zhang R, Dong J, Yang C. Evaluation of internal control genes for qRT-PCR normalization in tissues and cell culture for antiviral studies of grass carp (Ctenopharyngodonidella). Fish Shellfish Immunol. 2011;30(3):830-5. https://doi.org/10.1016/j.fsi.2011.01.006
  29. Tang R, Dodd A, Lai D, McNabb WC, Love DR. Validation of zebrafish (Danio rerio) reference genes for quantitative real-time RT-PCR normalization. Acta BiochimBiophys Sin. 2007;39(5):384-90.
  30. Tang X, Liu X, Zhang Y, Zhu P, Lin H. Molecular cloning, tissue distribution and expression profiles of thyroid hormone receptors during embryogenesis in orange-spotted grouper (Epinepheluscoioides). General CompEndocrinol. 2008;159(2-3):117-24.
  31. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002;3(7):0034-1.
  32. Wang H, Zhang X, Liu Q, Liu X, Ding S. Selection and evaluation of new reference genes for RT-qPCR analysis in Epinephelus akaara based on transcriptome data. PloS one. 2017;12(2):e0171646. https://doi.org/10.1371/journal.pone.0171646
  33. Xie F, Xiao P, Chen D, Xu L, Zhang B. miRDeepFinder: a miRNA analysis tool for deep sequencing of plant small RNAs. Plant Mol. Biol. 2012;80(1):75-84. https://doi.org/10.1007/s11103-012-9885-2
  34. Zheng WJ, Sun L. Evaluation of housekeeping genes as references for quantitative real time RT-PCR analysis of gene expression in Japanese flounder (Paralichthys olivaceus). Fish Shellfish Immunol. 2011;30(2):638-45. https://doi.org/10.1016/j.fsi.2010.12.014

Cited by

  1. Evaluation of candidate reference genes for quantitative RTqPCR analysis in goldfish (Carassius auratus L.) in healthy and CyHV-2 infected fish vol.237, 2021, https://doi.org/10.1016/j.vetimm.2021.110270
  2. Altered expression of immune factors in sevenband grouper, Hyporthodus septemfasciatus following nervous necrosis virus challenge at optimal and suboptimal temperatures vol.119, 2019, https://doi.org/10.1016/j.fsi.2021.10.033