DOI QR코드

DOI QR Code

4D-8PSK TCM 위성통신 시스템 시뮬레이터 설계 및 구현

Design and Implementation of 4D-8PSK TCM Simulator for Satellite Communication Systems

  • 투고 : 2018.11.06
  • 심사 : 2019.01.20
  • 발행 : 2019.03.31

초록

본 논문에서는 CCSDS에서 권고하고 있는 대역폭 효율적인 변조 방식 중 채널당 2.0, 2.25, 2.5, 2.75 bits/symbol의 전송효율을 가지는 4D-8PSK TCM 시스템의 송신부와 수신부를 설계하고 시뮬레이터를 구현하여 AWGN 환경에서 모의시험을 통하여 BER 성능을 분석한다. 송신부는 CCSDS 표준을 준용하여 설계하고, 수신부는 차동 부호화 및 복호화를 일반화하여 차동 복호기를 설계하며, 트렐리스 복호 알고리즘은 보조격자의 정보와 비터비 알고리즘을 적용하여 설계하고, CCSDS 표준에서 주어진 8차원 성상도 맵퍼의 방정식을 가감법으로 풀어 성상도 디맵퍼를 설계한다. 특히, 컴퓨터 모의실험을 통해 비터비 복호기 설계 시 역추적 깊이에 따른 오류 성능을 제시하여 4D-8PSK TCM 시스템의 최적화된 송/수신부를 구현하고 성능을 분석한다.

In this paper, we design and implement the simulator for the transmitter and receiver of 4D-8PSK TCM with 2.0, 2.25, 2.5, and 2.75 bits/symbol-channel transmission efficiency recommended by the CCSDS for satellite communications, and then analyze the BER performance of 4D-8PSK TCM system in AWGN channel. The transmitter of 4D-8PSK TCM is designed in accordance with the recommendation in the CCSDS standard. Meanwhile, for the receiver design of 4D-8PSK TCM, we design the differential decoder generalizing the differential encoder/decoder scheme. The trellis decoding algorithm is designed by applying the auxiliary trellis information and the Viterbi algorithm, and an 8-dimensional constellation mapper equation given in the CCSDS standard is deconstructed to design constellation mapper. Especially, we present the optimized receiver for 4D-8PSK TCM system by investigating the BER performances for the traceback lengths in the Viterbi decoder through computer simulations..

키워드

참고문헌

  1. Unwanted emissions in the out-of-band domain, Recommendation ITU-R SM.1541-6, Aug. 2015.
  2. Bandwidth-Efficient Modulation, CCSDS 413.0-G-2 Green Book, Oct. 2009.
  3. G. Ungerboeck, "Trellis-coded modulation with redundant signal sets part I: Introduction", IEEE Commun. Mag., Vol. 25, No. 2, pp. 5-11, Feb. 1987. https://doi.org/10.1109/MCOM.1987.1093542
  4. G. Ungerboeck, "Trellis-coded modulation with redundant signal sets part II: State of the art", IEEE Commun. Mag., Vol. 25, No. 2, pp. 12-21, Feb. 1987. https://doi.org/10.1109/MCOM.1987.1093541
  5. G. Ungerboeck, "Channel coding with multilevel/ phase signals", IEEE Trans. Inf. Theory, Vol. 28, No. 1, pp. 55-67, Jan. 1982. https://doi.org/10.1109/TIT.1982.1056454
  6. G. D. Forney and L. F. Wei, "Multidimensional constellations-Part I: Introduction, figures of merit, and generalized cross constellations", IEEE J. Sel. Areas Commun., Vol. 7, No. 6, pp. 877-892, Aug. 1989. https://doi.org/10.1109/49.29611
  7. S. S. Pietrobon, R. H. Deng, A. Lafanechere, G. Ungerboeck, and D. J. Costello, "Trellis-coded multidimensional phase modulation", IEEE Trans. Inf. Theory, Vol. 36, No. 1, pp. 63-89, Jan. 1990. https://doi.org/10.1109/18.50375
  8. J. He, Z. Wang, and H. Liu, "An efficient 4-D 8PSK TCM decoder architecture", IEEE Trans. Very Large Scale Integr. (VLSI) Syst., Vol. 18, No. 5, pp. 808-817, May 2010. https://doi.org/10.1109/TVLSI.2009.2015325
  9. L. Huang, J. Wang, J. Zhu, J. Yang, F. Ren and X. Liu, "Research on 4-D 8PSK TCM decoding algorithm", Proc. 2012 2nd International Conference on Computer Science and Network Technology, Changchun, China, pp. 1894-1897, Dec. 2012.
  10. J. H. Lee and Y. J. Song, "Performance Analysis of TCM Codes in APCO-25 System", Proceedings of KIIT Summer Conference, pp. 305-306, Jun. 2015.
  11. Ik Soo Jin, "Performance of STBC-MTCM/TCM Systems for High Rate Transmissions", Journal of KIIT, Vol. 14, No. 12, pp. 99-105, Dec. 2016.