DOI QR코드

DOI QR Code

Changes in 2,6-dimethoxy-1,4-benzoquinone and Water Extractable Arabinoxylan Content of Wheat Germ Extract by Enzyme Treatment

효소처리에 따른 밀 배아 추출물의 2,6-dimethoxy-1,4-benzoquinone과 수용성 아라비노자일란 함량 변화

  • 이재강 (사조동아원(주) 제분연구소) ;
  • 이정훈 (사조동아원(주) 제분연구소) ;
  • 최용현 (사조동아원(주) 제분연구소) ;
  • 최용석 (사조동아원(주) 제분연구소) ;
  • 류기형 (공주대학교 식품공학과)
  • Received : 2018.10.16
  • Accepted : 2019.01.11
  • Published : 2019.02.28

Abstract

This study was carried out using Celluclast 1.5L to increase the content of 2,6-DMBQ and water extractable arabinoxylan in wheat germ extract. Extraction temperatures were 30℃, 45℃ and 60℃. The extraction times were 0, 6, 12, 18, 24 and 30 h. The pH of the extract decreased rapidly from 18 h at 30℃ in both water- and enzyme-treated extracts. 2,6-DMBQ of water- and enzyme-treated extracts increased with the extraction time. At 30-hour extraction time, enzyme-treated extract increased 27.60% at 30℃ extraction temperature than water extraction. Extraction temperatures of 45℃ and 60℃ were increased by 65.03% and 151.05%, respectively. The highest content of water-extractable arabinoxylan was 15.23±0.08 mg/g when the enzyme was treated at an extraction temperature of 60℃ for 30 h. At 30=hour extraction time, enzyme-treated extract increased 7.92% at 30℃ extraction temperature compared to water extraction. Extraction temperatures of 45℃ and 60℃ were increased by 31.20% and 54.38%, respectively.

본 연구는 밀 배아의 기능성 물질인 2,6-DMBQ와 아라비노자일란 추출 효율을 증가시키기 위하여 상업용 효소인 Celluclast 1.5L을 사용하여 추출하였다. 추출 시 온도는 30, 45, 60℃였고, 추출 시간은 0, 6, 12, 18, 24, 30시간 추출 후 상등액 pH 변화와 건조물을 분석하였다. 추출물의 pH는 WEWG와 ETWG 모두 추출 온도 30℃에서는 18시간 추출 시부터 급격하게 감소하였으며, 45℃는 12시간부터 감소하였고, 60℃는 다른 추출 온도와 비교하여 큰 변화는 없었다. 2,6-DMBQ는 WEWG와 ETWG 모두 추출 시간이 경과함에 따라 증가하였다. 추출 온도 30℃에서 가장 높은 함량으로 추출되었으며, 30시간 추출할 때 2,6-DMBQ 함량은 ETWG에서 WEWG 보다 추출 온도 30℃에서 27.60%, 45℃에서 65.03%, 60℃에서 151.05% 증가하였다. 수용성 아라비노자일란 함량은 WEWG와 비교하여 ETWG가 높게 측정되었으며, 효소 처리 후 60℃에서 15.23±0.08 mg/g으로 가장 높은 함량으로 나타났다. 30시간 추출 시 ETWG와 WEWG에서의 수용성 아라비노자일란 함량을 비교했을 때 30℃에서 7.92%, 45℃에서 31.20%, 60℃에서 54.38% 증가하였다. 본 연구 결과는 제분 부산물인 밀 배아에 항염 활성을 보유하는 기능성 소재로서의 활용을 위한 기초자료로 이용될 수 있을 것으로 판단된다.

Keywords

References

  1. Ausiello A, Micoli L, Pirozzi D, Toscano G, Turoco M. 2015. Biohydrogen production by dark fermentation of Arundo donax for feeding fuel cells. Chem. Eng. Trans. 43: 385-390.
  2. Autio K. 1996. Functional aspects of cereal cell wall polysaccharides. In: Carbohydrate in food. Eliasson AC (eds). Marcel Dekker, Inc., New York, NY, USA, pp. 227-266.
  3. Bae MJ, Yee ST, Chae SY, Shin SH, Kweon SH, Park MH, Song MK, Hwang SJ. 2004. The effects of the arabinoxylane and the polysaccharide peptide (PSP) on the antiallergy, anticancer. J. Korean Soc. Food Sci. Nutr. 33: 469-474. https://doi.org/10.3746/jkfn.2004.33.3.469
  4. Bansal S, Sudha ML. 2011. Nutritional, microstructural, rheological and quality characteristics of biscuits using processed wheat germ. Int. J. Food. Sci. Nutr. 62: 474-479. https://doi.org/10.3109/09637486.2010.549116
  5. Byun MW, Cha BS, Kwon JH, Cho HO, Kim WJ. 1989. The combined effect of heat treatment and irradiation on the inactivation of major lactic acid bacteria associated with kimchi fermentation. Korean J. Food Sci. Technol. 21: 185-191.
  6. Choi EM, Lim TS, Lee HL, Hwang JK. 2002. Immune cell stimulating activity of wheat arabinoxylan. Korean J. Food Sci. Technol. 34: 510-517.
  7. Choi YS, Lee JK, Lee JH, Kum HI, Choi YH, Shin MS. 2018. Effects of enzyme treatment on antioxidant activity of wheat germ. Korean J. Food Cook Sci. 34:512-518. https://doi.org/10.9724/kfcs.2018.34.5.512
  8. Choi YS, Lee JK, Lee MG, Lee SG, Jeong HY, Kang H. 2017. Splenic T cell and intestinal IgA responses after supplementation of soluble arabinoxylan-enriched wheat bran in mice. J. Funct. Foods. 28: 246-253. https://doi.org/10.1016/j.jff.2016.11.025
  9. Classen PAM, Budde MAW, Lopez-contreas AM. 2000. Acetone, butanol and ethanol production from domestic organic waste by solventogenic clostridia. J. Mol. Micorbiol. Biotechnol. 2: 39-44.
  10. Crolla A, Kennedy KJ. 2001. Optimization of citric acid production from Candida lipolytica Y-1095 using n-paraffin. J. Biotechnol. 89: 27-40. https://doi.org/10.1016/S0168-1656(01)00278-4
  11. De Angelis M, Bottacini F, Fosso B, Kelleher P, Calasso M, Di Cagno R, Ventura M, Picardi E, Sinderen DV, Gobbetti M. 2014. Lactobacillus rossiae, a vitamin B12 producer, represents a metabolically versatile species within the genus Lactobacillus. PLOS ONE. 9: e107232. https://doi.org/10.1371/journal.pone.0107232
  12. Douglas SG. 1981. A rapid method for the determination of arabinoxylans in wheat flour. Food Chem. 7: 139-145. https://doi.org/10.1016/0308-8146(81)90059-5
  13. Escarnot E, Aguedo M, Agneessens R, Wathelet B, Paquot M. 2011. Extraction and characterization of water-extractable and water-unextractable arabinoxylans from spelt bran: Study of the hydrolysis conditions for monosaccharides analysis. J. Cereal Sci. 53: 45-52. https://doi.org/10.1016/j.jcs.2010.09.002
  14. Hidvegi M, Raso E, Tomoskozi-farkas R, Szende B, Paku S, Pronai L, Bocsi J, Lapis K. 1999. MSC, a new benzoquinone-containing natural product with antimetastatic effect. Cancer Bioter. Radiopharm. 14: 277-289.
  15. Jang MH, Kim MD. 2010. Exploration of β-glucosidase activity of lactic acid bacteria isolated from kimchi. Food Eng. Prog. 14: 243-248.
  16. Kang BK, Kim MJ, Jeong DH, Kim KBWR, Bae NY, Park JH, Park SH, Ahn DH. 2016a. Anti-inflammatory effect of wheat germ oil on lipopolysaccharide-stimulated RAW 264.7 cells and mouse ear edema. Microbiol. Biotechnol. Lett. 44: 236-245. https://doi.org/10.4014/mbl.1601.01001
  17. Kang H, Lee MG, Lee JK, Choi YH, Choi YS. 2016b. Enzymatically-processed wheat bran enhances macrophage activity and has in vivo anti-inflammatory effects in mice. Nutrients. 8: 188-200. https://doi.org/10.3390/nu8040188
  18. Lee SH, Kim KN, Cha SH, Ahn GN, Jeon YJ. 2006. Comparison of antioxidant activities of enzymatic and methanolic extracts from ecklonia cava stem and leave. J. Korean Soc. Food Sci. Nutr. 35: 1139-1145. https://doi.org/10.3746/jkfn.2006.35.9.1139
  19. Leroy F, Vuyst LD. 2004. Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends Food Sci. Technol. 15: 67-78. https://doi.org/10.1016/j.tifs.2003.09.004
  20. Liu J, Miao T, Zheng F, Rahim K, Lou H, Jiang W. 2018. Characterization of two endo-β-1,4-xylanases from Myceliophthora thermophila and their saccharification efficiences, synergistic with commercial cellulase. Front. Microbiol. 9: 233-243. https://doi.org/10.3389/fmicb.2018.00233
  21. Lu ZX, Gibson PR, Muir JG, Fielding M, O'Dea K. 2000. Arabinoxylan fiber from a by-product of wheat flour processing behaves physiologically like a soluble, fermentable fiber in the large bowel of rats. J. Nutr. 130: 1984-1990. https://doi.org/10.1093/jn/130.8.1984
  22. Merino ST, Cherry J. 2007. Progress and challenges in enzyme development for biomass utilization. Adv. Biochem. Eng. Biotechnol. 108: 95-120.
  23. Mueller T, Jordan K, Voigt W. 2011. Promising cytotoxic activity profile of fermented wheat germ extract (Avemar) in human cancer lines. J. Exp. Clin. Canc. Res. 30: 42-53. https://doi.org/10.1186/1756-9966-30-42
  24. Paradiso VM, Summo C, Trani A, Caponio F. 2008. An effort to improve the shelf life of breakfast cereals using natural mixed tocopherols. J. Cereal Sci. 47: 322-330. https://doi.org/10.1016/j.jcs.2007.04.009
  25. Rizzello CG, Mueller T, Coda R, Reipsch F, Nionelli L, Curiel JA, Gobbetti M. 2013. Synthesis of 2-methoxy benzoquinone and 2,6-dimethoxybenzoquinone by selected lactic acid bacteria during sourdough fermentation of wheat germ. Microb. Cell Fact. 12: 105-113. https://doi.org/10.1186/1475-2859-12-105
  26. Rizzello CG, Nionelli L, Coda R, De Angelis M, Gobbetti M. 2010. Effect of sourdough fermentation on stabilization, and chemical and nutritional characteristics of wheat germ. Food Chem. 119: 1079-1089. https://doi.org/10.1016/j.foodchem.2009.08.016
  27. Rosgaard L, Pedersen S, Cherry JR, Harris P, Meyer AS. 2006. Efficiency of new fungal cellulose systems in boosting enzymatic degradation of barley straw lignocellulose. Biotechnol. Prog. 22: 493-498. https://doi.org/10.1021/bp050361o
  28. Saulnier L, Sado PE, Branlard G, Charmet G, Guillon F. 2007. Wheat arabinoxylans: Exploiting variation in amount and composition to develop enhanced varieties. J. Cereal Sci. 46: 261-281. https://doi.org/10.1016/j.jcs.2007.06.014
  29. Scheirlinck I, Van der Meulen R, Vrancken G, De Vuyst L, Settanni L. 2009. Polyphasic taxonomic characterization of Lactobacillus rossiae isolates from Belgian and Italian sourdoughs reveals intraspecific heterogeneity. Syst. Appl. Microbiol. 32: 151-156. https://doi.org/10.1016/j.syapm.2008.12.006
  30. Seong KT, Hassan MA, Ariff AB. 2008. Enzymatic saccharification of pretreated solid palm oil mill effluent and oil palm fruit fiber. Pertanika J. Sci. Technol. 16: 157-169.
  31. Shim KS, Park GG, Park YS. 2014. Bioconversion of puffed red ginseng extract using β-glucosidase-producing lactic acid bacteria. Food Eng. Prog. 18: 332-340. https://doi.org/10.13050/foodengprog.2014.18.4.332
  32. Shin DS, Jeong ST, Sim EY, Lee SK, Kim HJ, Woo KS, Oh SK, Kim SJ, Park HY. 2017. Quality characteristics of mixed Makgeolli with barley and wheat by fermentation temperature. Korean J. Food Nutr. 30: 305-311. https://doi.org/10.9799/ksfan.2017.30.2.305
  33. Sorensen HR, Meyer AS, Pedersen S. 2003. Enzymatic hydrolysis of water-soluble wheat arabinoxylan. 1. Synergy between alpha-L-arabinofuranosidases, endo-1,4-beta-xylanases, and beta-xylosidase activities. Bioeng. 81: 726-731. https://doi.org/10.1002/bit.10519
  34. Tomoskozi-farkas R, Daood HG. 2004. Modification of chromatographic method for the determination of benzoquinones in cereal products. Chromatographia. 60: 227-230.
  35. Vinzant TB, Adney WS, Decker SR, Baker JO, Kinter MT, Sherman NE, Fox JW, Himmel ME. 2001. Fingerprinting Trichoderma reesei hydrolases in a commercial cellulose preparation. Appl. Biochem. Biotechnol. 91-93: 99-107. https://doi.org/10.1385/ABAB:91-93:1-9:99
  36. Wang J, Sun B, Liu YL, Zhang H. 2014. Optimisation of ultrasound-assisted enzymatic extraction of arabinoxylan from wheat bran. Food Chem. 150: 482-488. https://doi.org/10.1016/j.foodchem.2013.10.121
  37. Yong HU, Kim SM, Shim JH. 2012. Enzymatic production of alkyl β-glucoside based on transglycosylation activity of celluclast. J. Korean Soc. Food Sci. Nutr. 41: 1417-1422. https://doi.org/10.3746/jkfn.2012.41.10.1417
  38. Yoo JG, Kim MD. 2010. Production of 2-methoxy-1,4-benzoquinone (2-MBQ) and 2,6-dimethoxy-1,4-benzoquinone (2,6-DMBQ) from wheat germ using lactic acid bacteria and yeast. Food Eng. Prog. 14: 292-298.
  39. Zheng Z, Guo X, Zhu K, Peng W, Zhou H. 2016. The optimization of the fermentation process of wheat germ for flavonoids and two benzoquinones using EKF-ANN and NSGA-II. RSC Advances. 59: 53821-53829.
  40. Zuzana S, Edita G, Ernest S. 2009. Chemical composition and nutritional quality of wheat grain. Acta Chimica. Slovaca. 2: 115-138.