Sodium titanate as an infrared reflective material for cool roof application

  • Ullah, Mahboob (Energy Environment Division, Korea Institute of Ceramic Engineering and Technology (KICET)) ;
  • Kim, Hee Jung (Energy Environment Division, Korea Institute of Ceramic Engineering and Technology (KICET)) ;
  • Heo, Jae Gu (Energy Environment Division, Korea Institute of Ceramic Engineering and Technology (KICET)) ;
  • Roh, Dong Kyu (Energy Environment Division, Korea Institute of Ceramic Engineering and Technology (KICET)) ;
  • Kim, Dae-Sung (Energy Environment Division, Korea Institute of Ceramic Engineering and Technology (KICET))
  • 투고 : 2018.12.09
  • 심사 : 2019.01.11
  • 발행 : 2019.07.01

초록

A solid-state route was used to prepare sodium titanium oxide (NTO, Na2Ti3O7) as a solar heat protecting material with an impressive solar reflectance (TSR = 94.3%) using a high refractive index rutile TiO2. The solar reflectance of the synthesized NTO was measured using UV-Vis-NIR spectrophotometer. Solar reflectance property of the synthesized compound depends on the calcination temperature. The solar reflectance property of the synthesized NTO powder was compared with commercial rutile TiO2. The compound synthesized at 900 ℃ for 24 hrs had remarkable solar reflectance 94.3% than that calcined below 900 ℃. Crystalline nature, structural property, morphology and optical properties of NTO powders were characterized and analyzed using XRD, FE-SEM, EDS and UV-Vis-NIR spectrophotometer. From the results, we guessed that NTO would be a suitable "solar heat protecting candidate" for energy-saving applications in coating industries.

키워드

참고문헌

  1. U. Berardi and M. Naldi, Energy and Build. 144 (2017) 262-275. https://doi.org/10.1016/j.enbuild.2017.03.052
  2. V.C. Malshe, A. K. Bendiganavale, Recent Pat. Chem. Eng. 1 (2008) 67-79. https://doi.org/10.2174/2211334710801010067
  3. S. Bretz, H. Akbari, and A. Rosenfeld, Atmos. Environ. 32 [1] (1998) 95-101. https://doi.org/10.1016/S1352-2310(97)00182-9
  4. A. Libbra, L. Tarozzi, A. Muscio, and M.A. Corticelli, Opt. Laser Tech. 43[2] (2011) 394-400. https://doi.org/10.1016/j.optlastec.2009.07.001
  5. M. Sheikholeslami, D.D. Ganji, and R. Moradi, Chem. Eng. Sci. 173 (2017) 326-336.
  6. H.J. Kim, H.J. Lee, and D.S. Kim, Mater. Des. 150 (2018) 188-192. https://doi.org/10.1016/j.matdes.2018.04.043
  7. G.K. Dalapati, S.M. Panah, S.T. Chua, M. Sharma, T.I. Wong, H.R. Tan, and D. Chi, Sci. Rep. 6 (2016) 20182. https://doi.org/10.1038/srep20182
  8. S.-Z. Zhang, W. Shi, Y. Song, J. Qu, J. Qin, J. Zhang, T. Li, Y. H. Zhang, and R. Zhang, J. Energy. Build. 63 (2013) 49-58. https://doi.org/10.1016/j.enbuild.2013.03.051
  9. R. Levinson, P. Berdahl, and H. Akbari, Sol. Energy Mater. Sol. Cells 89 (2005) 351-389. https://doi.org/10.1016/j.solmat.2004.11.013
  10. D. Schildhammer, G. Fuhrmann, L. Petsching, N. Weinberger, H. Schottenberger, and H. Huppertz, Dyes. Pigm. 138 (2017) 90-99. https://doi.org/10.1016/j.dyepig.2016.11.024
  11. L.S. Kumari, P.P. Rao, A.N.P. Radhakrishnan, V. James, S. Sameera, and P. Koshy, Sol. Energy Mater. Sol. Cells. 112 (2013) 134-143. https://doi.org/10.1016/j.solmat.2013.01.022
  12. A. Adailton, A.F. Fabio, L.R. Silvab, A. Righib, M.B. da Silvaa, B.P. Silvaa, E.W.S. Caetanoc, and V.N. Freirea, J. Solid. State Chem. 250 (2017) 68-74. https://doi.org/10.1016/j.jssc.2017.03.017
  13. Y.C. Pu, Y.C. Chen, and Y.J. Hsu, App. Catal. B. Environ. 97 (2010) 389-397. https://doi.org/10.1016/j.apcatb.2010.04.023
  14. M. Zarrabeitia, E.C. Martinez, J.M.L Opez, D. Amo, A.E. Barrio, M.A. Munoz, M. arquez, T. Rojo, and M.C. Cabanas, J. Power Sources 324 (2016) 378-387. https://doi.org/10.1016/j.jpowsour.2016.05.103
  15. Y. An, D. Wang, and C. Wu, Physica E. 60 (2014) 210-213. https://doi.org/10.1016/j.physe.2014.03.001
  16. T.-P. Feist, S.J. Mocarski, P.K. Davies, A.J. Jacobson, and J.T. Lewandowski, Solid State Ion. 28 (1988) 1338-1343
  17. H. Izawa, S. Kikkawa, and M. Koizumi, J. Solid State Chem. 60 (1985) 264-267. https://doi.org/10.1016/0022-4596(85)90122-7
  18. H. Izawa, S. Kikkawa, and M. Koizumi, J. Solid State Chem. 69 (1987) 336-342. https://doi.org/10.1016/0022-4596(87)90091-0
  19. S. Takayoshi, F. Izumi, and M. Watanable, Chem. Mater. 8 (1996) 777-782. https://doi.org/10.1021/cm950463h
  20. M. Dynarowska, J. Kotwinski, M. Leszczynska, M. Marzantowicz, and F. Krok, Solid. State Ion. 301 (2017) 35-42. https://doi.org/10.1016/j.ssi.2017.01.002
  21. M.A. Tsiamtsouri, P.K. Allan, A.J. Pell, J.M. Stratford, G Kim, R.N. Kerber, P.C.M.M. Magusin, D.A. Jefferson, and C.P. Grey, Chem. Mater. 30 (2018) 1505-1516. https://doi.org/10.1021/acs.chemmater.7b03753
  22. A. Rudola, K. Saravanan, C.W. Mason, and P. Balaya, J. Mater. Chem. A1 (2013) 2653-2662.
  23. R.S. Dubey, and B. Ganesan, Super lattice Microst. 111 (2017) 1099-1103. https://doi.org/10.1016/j.spmi.2017.08.011
  24. P. Meenakshi, and M. Selvaraj, Sol. Energy Mater. Sol. Cells 174 (2018) 530-537. https://doi.org/10.1016/j.solmat.2017.09.048