Novel green Sr4ScAl3O10:Eu2+ phosphor prepared by the melt quenching technique

  • Toda, Kenji (Graduate School of Science and Technology, Niigata University) ;
  • Iwaki, Masato (Graduate School of Science and Technology, Niigata University) ;
  • Katsu, Minenori (Graduate School of Science and Technology, Niigata University) ;
  • Kamei, Shin-nosuke (Graduate School of Science and Technology, Niigata University) ;
  • Kim, Sun-Woog (Graduate School of Science and Technology, Niigata University) ;
  • Hasegawa, Takuya (Graduate School of Science and Technology, Niigata University) ;
  • Muto, Masaru (Graduate School of Science and Technology, Niigata University) ;
  • Yamanashi, Ryota (Graduate School of Science and Technology, Niigata University) ;
  • Sakamoto, Tatsuya (Graduate School of Science and Technology, Niigata University) ;
  • Ishigaki, Tadashi (Promotion Center for Transdisciplinary Research, Niigata University) ;
  • Uematsu, Kazuyoshi (Department of Chemistry and Chemical Engineering, Niigata University) ;
  • Sato, Mineo (Department of Chemistry and Chemical Engineering, Niigata University) ;
  • Yoon, Dae-Ho (Sungkyunkwan University)
  • Received : 2018.11.27
  • Accepted : 2019.05.09
  • Published : 2019.06.01

Abstract

New green-emitting Sr4ScAl3O10:Eu2+ phosphor was prepared using a novel melt quenching synthesis method. The temperature of raw materials irradiated with the strong light of the Xe arc-lamp was rose up to about 2273 K, followed by a sharp drop in the temperature after turn off the lamp. This method is a useful tool for rapid screening of novel phosphor materials.

Keywords

References

  1. S. W. Kim, K. Toda, T. Hasegawa, K. Uematsu, and M. Sato, in "Phosphor, Up Conversion Nano Particles, Quantum Dots and Their Applications" (Springer-Verlag Berlin Heidelberg, 2017) p. 219.
  2. M. Rath, and Hk. Muller-Buschbaum, J. Alloys and compd. 189[1] (1992) 127-130. https://doi.org/10.1016/0925-8388(92)90058-H
  3. N. Imanaka, Y-W. Kim, T. Masui, and G-Y. Adachi, Cryst. Growth & Design. 3 (2003) 289-290. https://doi.org/10.1021/cg025615h
  4. S. J. Schneider, and C. L. McDaniel, J. Res. Natl. Stand. Sec. A. 71A[4] (1967) 317-333. https://doi.org/10.6028/jres.071A.038
  5. T. Ishigaki, K. Toda, M. Yoshimura, K. Uematsu, and M. Sato, Sci. Technol. Adv. Mater. 12 (2011) 054205. https://doi.org/10.1088/1468-6996/12/5/054205
  6. T. Ishigaki, K. Toda, T. Watanabe, N. Sakamoto, N. Matsushita, and M. Yoshimura, J. Mater. Sci. 43 (2008) 4749-4752. https://doi.org/10.1007/s10853-008-2481-9
  7. R. Zhang, H. Lin, Y. Yu, D. Chen, J. Xu, and Y. Wang, Laser Photonics Rev. 8[1] (2014) 158-164. https://doi.org/10.1002/lpor.201300140
  8. X. Zhang, J. Yu, J. Wang, B. Lei, Y. Liu, Y. Cho, R-J. Xie, H-W. Zhang, Y. Li, Z. Tian, Y. Li, and Q. Su, ACS Photonics, 4[4] (2017) 986-995. https://doi.org/10.1021/acsphotonics.7b00049
  9. W. D. Johnson, J. Am. Ceram. Soc. 47[4] (1964) 198-201. https://doi.org/10.1111/j.1151-2916.1964.tb14392.x
  10. W. D. Johnson, J. Am. Ceram. Soc. 48[4] (1965) 184-190. https://doi.org/10.1111/j.1151-2916.1965.tb14709.x
  11. J. McKittrick, and L. E. Shea-Rohwer, J. Am. Ceram. Soc. 97[5] (2014) 1327-1352. https://doi.org/10.1111/jace.12943