DOI QR코드

DOI QR Code

Model for Maximum Power Point Tracking Using Artificial Neural Network and Fuzzy

인공 신경망과 퍼지를 이용한 최대 전력점 추적을 위한 모델

  • Received : 2019.08.08
  • Accepted : 2019.09.22
  • Published : 2019.09.30

Abstract

Photovoltaic power generation requires MPPT algorithm to track stable and efficient maximum power output power point according to external changes such as solar radiation and temperature. This study implemented a model that could track MPP more quickly than original MPPT algorithm using artificial neural network. The proposed model finds the current and voltage of MPP using the original MPPT algorithm for various combinations of insolation and temperature for training data of artificial neural networks. The acquired MPP data was learned using the input node as insolation and temperature and the output node as the current and voltage. The Experiment results show tracking time of the original algorithms P&O, InC and Fuzzy were respectively 0.428t, 0.49t and 0.4076t for the 0t~0.3t range, and MPP tracking time of the proposed model was 0.32511t and it is 0.1t faster than the original algorithms.

태양광 발전은 일사량 및 온도 등 외부변화에 따른 안정적이고 효율적인 최대 전력 출력 전력점을 추적하기 위한 MPPT 알고리즘이 필요하다. 본 연구는 인공 신경망을 이용하여 기존 MPPT 알고리즘보다 신속하게 MPP를 추적할 수 있는 모델을 구현하였다. 제안 모델은 인공 신경망의 학습 데이터를 위해 다양한 일사량과 온도의 조합에 대해서 기존 MPPT 알고리즘으로 MPP의 전류와 전압을 찾았다. 획득한 MPP 데이터는 입력 노드를 일사량과 온도로 출력 노드를 전류와 전압으로 하여 학습하였다. 실험결과 일사량과 온도 변화가 있는 0~0.3t 구간에서 추적시간은 기존 알고리즘인 P&O와 InC 그리고 Fuzzy는 각각 잘못된 계산식t, 0.49t 그리고 0.4076t이였으며, 제안 모델은 0.32511t로서 기존 알고리즘 보다 0.1t 이상 신속하게 MPP를 추적하였다.

Keywords

References

  1. J. K. Min and W. S. Choi, "Analysis of Power Generation Characteristics according to the MPPT Algorithm Period", The Transactions of the Korean Institute of Electrical Engineers, Vol. 67, No. 4, pp. 233-237, Dec. 2018.
  2. S. K. Ock and O. Yang, "A Study on the New MPPT Control Method for Grid-connected PV Generation System", The Journal of Korean Institute of Information Technology, Vol. 10, No. 2, pp. 28-3, Feb. 2012.
  3. S. H. Moon, J. W. Kim, B. G. Park, and J. M. Kim, "Maximum Power Control of Tidal Current Generation System using P&O Algorithm", The Transactions of the Korean Institute of Power Electronics, Vol. 22, No. 3, pp. 199-206, Jun. 2017. https://doi.org/10.6113/TKPE.2017.22.3.199
  4. C. I. William and R. Ramesh, "Comparative study of P&O and InC MPPT algorithms", American Journal of Engineering Research, Vol. 2, No. 12, pp. 402-408, Dec. 2013.
  5. R. Algarin, Carlos, J. T. Giraldo, and O. R. Alvarez, "Fuzzy logic based MPPT controller for a PV system", Energies. Vol. 10, No. 12, pp. 2036-2043, Dec. 2017. https://doi.org/10.3390/en10122036
  6. C. Larbes, S. M. Ait-Cheikh, T. Obeidi, and A. Zerguerras, "Genetic algorithms optimized fuzzy logic control for the maximum power point tracking in photovoltaic system", Renewable Energy, Vol. 34, No. 10, pp. 2093-2100, Oct. 2009. https://doi.org/10.1016/j.renene.2009.01.006
  7. Yilmaz Unal, Kircay Ali, and Borekci Selim, "PV System fuzzy logic MPPT method and PI control as a charge controller", Renewable and Sustainable Energy Reviews, Vol. 81, Part 1, pp. 994-1001, Jan. 2018. https://doi.org/10.1016/j.rser.2017.08.048
  8. B. Bendib, F. Krim, H. Belmili, M. F. Almi, and S. Boulouma, "Advanced Fuzzy MPPT Controller for a stand-alone PV system", Energy Procedia, Vol. 50 pp. 383-392, 2014. https://doi.org/10.1016/j.egypro.2014.06.046
  9. Jobeda J. Khanam and Simon Y. Foo, "Modeling of a photovoltaic array in MATLAB simulink and maximum power point tracking using neural network", Journal of Electrical & Electronic Systems, Vol. 2, No. 2, pp. 40-46, Jul. 2018.
  10. D. H. Yoo, G and Y. Jeong, "Novel Ozone Generation Power Supply using a Topology of the PFC DC-DC Boost Converter and Single-phase Half-bridge Inverter", The Journal of Korean Institute of Information Technology, Vol. 11, No. 7, pp. 19-30, Jul. 2013.
  11. B. S. Kim, J. J. King, W. S. Sim, J. M. JO, and H. C., "A study on High-Efficiency MPPT Algorithm Based on P&O Method with Variable Step Size", The Transactions of the Korean Institute of Power Electronics, Vol. 24, No. 1, pp. 1-8, Feb. 2019. https://doi.org/10.6113/TKPE.2019.24.1.1
  12. N. Femia, G. Petrone, G. Spagnuolo, and M. Vitelli, "Optimization of perturb and observe maximum power point tracking method", IEEE Trans. on Power Electronics, Vol. 20, No. 4, pp. 963-973, Jul. 2005. https://doi.org/10.1109/TPEL.2005.850975
  13. Y. S. Choi, E. G. Kim, and J. W. Jung, "MPPT Control Technique for Photovoltaic System", KIPE MAGAZINE, Vol. 18, No. 1, pp. 29-36, Feb. 2013.
  14. J. H. Shim, S. D. Yang, S. H. Jung, J. Y. Choi, I. Choy, J. U. An, and D. H. Lee, "Analysis of various MPPT algorithms for PCS", Journal of the Korean Solar Energy Society, Vol. 31, No. 2, pp. 16-21, Apr. 2011. https://doi.org/10.7836/kses.2011.31.2.016
  15. S. R. Chafle and U. B. Vaidya, "InCremental Conductance MPPT Technique FOR PV System", International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, Vol. 2, No. 6, pp. 2719-2726, Jun. 2013.
  16. F. Liu, S. Duan, F. Liu, B. Liu, and Y. Kang, "A variable step size InC MPPT method for PV systems", IEEE Transactions on industrial electronics, Vol. 55, No. 7, pp. 2622-2628, Jul. 2008. https://doi.org/10.1109/TIE.2008.920550
  17. Ankit Chaturvedi, "Rainfall Prediction using Back-Propagation Feed Forward Network", International Journal of Computer Applications, Vol. 119, No. 4, pp. 1-5, Jun. 2015. https://doi.org/10.5120/21052-3693
  18. Bitna Kim and Young Ho Park, "Beginner's Guide To Neural Networks For The Mnist Dataset Using Matlab", Korean J. Math, Vol. 26, No. 2, pp. 337-348, Jun. 2018. https://doi.org/10.11568/KJM.2018.26.2.337