Abstract
We investigated the effects of Al2O3 addition on (1-x)Li2B4O7-xAl2O3 (LBAO; x = 0, 0.005, 0.01, 0.05, 0.07, and 0.1) glasses. The glasses were synthesized by a conventional melt-quench method. Structural transformations of the LBAO glasses were assessed via X-ray diffraction analysis. Estimations of ΔT, KGS = (Tc-Tg)/(Tm-Tc), activation energy, and the Avrami parameter were performed using differential thermal analysis and differential scanning calorimetry. An interpretation of non-isothermal kinetics of the crystallization process is presented using the modified Ozawa equation. The activation energy E increased from 3.3 to 3.5 eV for the LBAO (x < 0.01) glasses whereas those of the LBAO (x > 0.05) glasses slightly increased from 3.75 to 4.05 eV. The exponent n was estimated to be 3.9 ± 0.1 for the LBAO (x < 0.01) glasses and 3.2 ± 0.02 for the LBAO (x > 0.05) glasses. Microstructural characterization of the glassy and crystalline phases using atomic force microscopy was investigated. The effects of Al2O3 on the LBAO glasses include a decreased nucleation rate in the crystallization process and a significantly reduced crystal size.