인천대학교 멀티스케일 유동제어 연구실

Multi-scale Flow Control Laboratory

  • 권재성 (인천대학교 공과대학 기계공학과 대학원) ;
  • 이학민 (인천대학교 공과대학 기계공학과 대학원) ;
  • 박수민 (인천대학교 공과대학 기계공학과 대학원)
  • 발행 : 2019.04.30

초록

키워드

GSSGB0_2019_v17n1_3_f0001.png 이미지

Fig. 2. REP기술에 의한 셀 제어.(21) REP에 의한 Shewanella Oneidensis MR-1박테리아의 (a) 중합,(b) 패터닝, (c) 이송. (d) REP기술에 의한 Staphylococcus aureus박테리아와 Saccharomycescerevisiae효모의 크기기반 분리

GSSGB0_2019_v17n1_3_f0002.png 이미지

Fig. 3. 사용후 핵연료 중간저장을 위한 콘크리트 건식저장 시스템.(35) (a) 콘크리트 저장용기의 외부형상, (b) 콘크리트 저장용기의 내부 단면도, (c) 불활성기체 및 공기의 자연대류에 의한 사용후 핵연료의 붕괴열 제거과정

GSSGB0_2019_v17n1_3_f0003.png 이미지

Fig. 4. 건식저장용기 내 불활성기체에 의한 열전달 상관관계 모델링.(37,39) (a) 상용 CFD소프트웨어를 이용한 캐니스터 내 불활성기체의 유동장과 온도장 예측, (b) 건식저장용기를 모방한 실험체 내 자연대류의 가시화 및PIV측정

GSSGB0_2019_v17n1_3_f0004.png 이미지

Fig. 1. (a) Rapid Electrokinetic Patterning의 기술적 개요, (b) REP기술에 의한 다양한 입자제어(28)

참고문헌

  1. Whitesides, G.M., 2006." The origins and the future of microfluidics." Nature.Vol. 442,pp. 368-373. https://doi.org/10.1038/nature05058
  2. Yi, C., Li, C.-W., Ji, S. and Yang, M., 2006." Microfluidics technology for manipulation and analysis of biological cells." Anal. Chim. Acta. Vol. 560,pp. 1-23. https://doi.org/10.1016/j.aca.2005.12.037
  3. Squires, T.M. and Quake, S.R., 2005." Microfluidics: Fluid physics at the nanoliter scale." Reviews of Modern Physics.Vol. 77,pp. 977-1026. https://doi.org/10.1103/RevModPhys.77.977
  4. Koch, M., Evans, A. and Brunnschweiler, A., 2000. Microfluidic Technology and Applications 1 edition ed. Wiley-Interscience, Baldock.
  5. Kirby, B.J., 2013. Micro- and Nanoscale Fluid Mechanics: Transport in Microfluidic Devices, Cambridge University Press, New York.
  6. Gravesen, P., Branebjerg, J. and Jensen, O.S., 1993." Microfluidics-a review." Journal of Micromechanics and Microengineering.Vol. 3,pp. 168-182. https://doi.org/10.1088/0960-1317/3/4/002
  7. Gossett, D.R., Tse, H.T.K., Lee, S.A., Ying, Y., Lindgren, A.G., Yang, O.O., Rao, J., Clark, A.T. and Carlo, D.D., 2012." Hydrodynamic stretching of single cells for large population mechanical phenotyping." Proceedings of the National Academy of Sciences.Vol. 109,pp. 7630-7635. https://doi.org/10.1073/pnas.1200107109
  8. Yamada, M. and Seki, M., 2005." Hydrodynamic filtration for on-chip particle concentration and classification utilizing microfluidics." Lab on a Chip.Vol. 5,pp. 1233-1239. https://doi.org/10.1039/b509386d
  9. Seo, H.-K., Kim, Y.-H., Kim, H.-O. and Kim, Y.-J., 2010." Hybrid cell sorters for on-chip cell separation by hydrodynamics and magnetophoresis." Journal of Micromechanics and Microengineering. Vol. 20,pp. 95019. https://doi.org/10.1088/0960-1317/20/9/095019
  10. Watarai, H., Suwa, M. and Iiguni, Y., 2004." Magnetophoresis and electromagnetophoresis of microparticles in liquids." Analytical and Bioanalytical Chemistry.Vol. 378,pp. 1693-1699. https://doi.org/10.1007/s00216-003-2354-7
  11. Pshenichnikov, A.F. and Ivanov, A.S., 2012." Magnetophoresis of particles and aggregates in concentrated magnetic fluids." Physical Review E.Vol. 86,pp. 05140101-05140111.
  12. Pamme, N. and Manz, A., 2004." On-chip free-flow magnetophoresis: continuous flow Separation of magnetic particles and agglomerates." Anal. Chem.Vol. 76,pp. 7250-7256. https://doi.org/10.1021/ac049183o
  13. Melvin, M., 1987. Electrophoresis, John Wiley & Sons, Chichester.
  14. Gas, B., 2009." Theory of electrophoresis: Fate of one equation." Electrophoresis.Vol. 30,pp. S7-S15. https://doi.org/10.1002/elps.200900133
  15. Zhang, C., Khoshmanesh, K., Mitchell, A. and Kalantar-zadeh, K., 2010." Dielectrophoresis for manipulation of micro/nano particles in microfluidic systems." Analytical and Bioanalytical Chemistry. Vol. 396,pp. 401-420. https://doi.org/10.1007/s00216-009-2922-6
  16. Pohl, H.A., 1978. Dielectrophoresis: The Behavior of Neutral Matter in Nonuniform Electric Fields, Cambridge University Press, New York.
  17. Moffitt, J.R., Chemla, Y.R., Smith, S.B. and Bustamante, C., 2008." Recent Advances in Optical Tweezers." Annu. Rev. Biochem.Vol. 77,pp. 205-228. https://doi.org/10.1146/annurev.biochem.77.043007.090225
  18. Ramos, A., Morgan, H., Green, N.G. and Castellanos, A., 1998." Ac electrokinetics: a review of forces in microelectrode structures." J. Phys. D: Appl. Phys.Vol. 31,pp. 2338-2353. https://doi.org/10.1088/0022-3727/31/18/021
  19. Wang, M.D., Yin, H., Landick, R., Gelles, J. and Block, S.M., 1997." Stretching DNA with optical tweezers." Biophys. J.Vol. 72,pp. 1335-1346. https://doi.org/10.1016/S0006-3495(97)78780-0
  20. Ashkin, A., Dziedzic, J.M. and Yamane, T., 1987." Optical trapping and manipulation of single cells using infrared laser beams." Nature.Vol. 330,pp. 769-771. https://doi.org/10.1038/330769a0
  21. Kwon, J.-S., Ravindranath, S.P., Kumar, A., Irudayaraj, J. and Wereley, S.T., 2012." Opto-electrokinetic manipulation for high-performance on-chip bioassays." Lab Chip.Vol. 12,pp. 4955-4959. https://doi.org/10.1039/c2lc40662d
  22. Kwon, J.-S. and Wereley, S.T., 2013." Towards New Methodologies for Manipulation of Colloidal Particles in a Miniaturized Fluidic Device: Optoelectrokinetic Manipulation Technique." J. Fluids Eng.Vol. 135,pp. 0213061-0213010.
  23. Kwon, J.-S., Thakur, R. and Wereley, S.T., 2012. Rapid Electrokinetic Patterning, in: Bhushan, B. (Ed.), Encyclopedia of nanotechnology. Springer, Dordrecht ; New York.
  24. Kumar, A., Kwon, J.-S., Williams, S.J., Green, N.G., Yip, N.K. and Wereley, S.T., 2010." Optically modulated electrokinetic manipulation and concentration of colloidal particles near an electrode surface." Langmuir.Vol. 26,pp. 5262-5272. https://doi.org/10.1021/la904661y
  25. Chiou, P.Y., Ohta, A.T. and Wu, M.C., 2005." Massively parallel manipulation of single cells and microparticles using optical images." Nature.Vol. 436,pp. 370-372. https://doi.org/10.1038/nature03831
  26. Kwon, J.S. and Wereley, S.T., 2015." Light‑actuated electrothermal microfluidic motion: experimental investigation and physical interpretation." Microfluidics and Nanofluidics.Vol. 19,pp. 609-619. https://doi.org/10.1007/s10404-015-1587-z
  27. Kumar, A., Kwon, J.-S. and Williams, S.J., 2009. A novel optically driven electrokinetic technique for manipulating nanoparticles, Proceeding of SPIE 7400. San Diego, CA, USA
  28. Williams, S.J., Kumar, A. and Wereley, S.T., 2008." Electrokinetic patterning of colloidal particles with optical landscapes." Lab Chip.Vol. 8,pp. 1879-1882. https://doi.org/10.1039/b810787d
  29. Chuang, H.-S., Wang, J.-Y., Kwon, J.-S. and Hsu, S.-M., 2019. Tear Diagnosis for Diabetic Retinopathy Using an Optoelectrokinetically Driven Bead-based Immunosensor, 20th International Conferenece on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII. Berlin, Germany.
  30. 에너지경제연구원, 2017. 세계 원전시장 인사이트 (World Nuclear Power Market Insight).
  31. 사용후 핵연료 공론화 지원단, 2013. 사용후 핵연료 중간저장.
  32. 한국 원자력 환경공단, 2016. 사용후 핵연료 이야기.
  33. 장웅성, 2014. 사용후 핵연료 저장현황 및 소재기술 동향. 한국 산업기술 평가관리원.
  34. 지식경제부, 2010. 사용후 핵연료 중장기 국가관리 모델개발 연구 (1 단계 보고서).
  35. 강경욱, 김형진, 조천형, 2016. "FLUENT를 활용한 콘크리트 건식 저장용기 공기유로 내부 유동장 해석." 한국 전산유체공학회지. Vol. 21, pp. 47-53.
  36. Shin, D., Jeong, U., Jeun, G. and Kim, S.J., 2016." CFD Analysis of Natural Convection flow Characteristics of Various Gases in the Spent Fuel Dry Storage System." The KSFM Journal of Fluid Machinery.Vol. 19,pp. 19-28.
  37. Shin, D., Kwon, J.S., Kim, T. and Kim, S.J., 2019." Local heat transfer characteristics of natural circulation flow inside an $8{\times}8$ partial spent fuel assembly under dry storage." Int. J. Heat Mass Transfer.Vol. 128,pp. 431-442. https://doi.org/10.1016/j.ijheatmasstransfer.2018.09.002
  38. In, W.-K., Kwack, Y.-K., Kook, D.-H. and Koo, Y.-H., 2014. CFD Simulation of Heat and Fluid Flow for Spent Fuel in a Dry Storage, Transactions of the Korean Nuclear Society Spring Meeting. Korean Nuclear Society, Jeju, Korea.
  39. Lee, H.M. and Kwon, J.-S., 2018. Numerical Analysis on Natural Convection of Backfill Gases in a Dry Storage System for Spent Nuclear Fuels, 2018 Korean Radioactive Waste Society Fall Meeting. Korean Radioactive Waste Society, Jeju, Korea.