DOI QR코드

DOI QR Code

Review on Polymer Electrolyte Membranes for Dye-sensitized Solar Cells

염료감응 태양전지용 고분자 전해질막의 총설

  • Lee, Jae Hun (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Park, Cheol Hun (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Lee, Chang Soo (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Kim, Jong Hak (Department of Chemical and Biomolecular Engineering, Yonsei University)
  • 이재훈 (연세대학교 화공생명공학과) ;
  • 박철훈 (연세대학교 화공생명공학과) ;
  • 이창수 (연세대학교 화공생명공학과) ;
  • 김종학 (연세대학교 화공생명공학과)
  • Received : 2019.04.08
  • Accepted : 2019.04.29
  • Published : 2019.04.30

Abstract

Dye-sensitized solar cells (DSSCs) have attracted great attention as sustainable energy devices. The efficiency and long-term stability of DSSCs are greatly influenced by electrode materials and electrolytes. In this review, we focused on the electrolytes of DSSCs. Polymer electrolyte membranes have been proposed as an alternative to conventional liquid electrolytes in DSSCs. Conventional liquid electrolytes can exhibit a high efficiency, but due to some problems such as poor long-term stability of device and leakage of liquid, much interest in polymer electrolyte membranes continues to rise and the papers on polymer electrolytes membranes have been extensively reported recently. This review covers the concept and development of polymer electrolyte membranes for DSSCs, and discusses the efficiency and electrochemical properties of DSSCs, highlighting the modification of polymer matrix, the introduction of additives such as organic-inorganic plasticizers and ionic liquids.

염료감응형 태양전지는 지속 가능한 에너지원으로서 많은 관심을 받고 있다. 염료감응형 태양전지의 효율과 장기 안정성은 전극 물질과 전해질에 의해 크게 영향을 받는데 본 총설에서는 전해질에 초점을 두어 서술하고자 한다. 고분자 전해질막은 염료감응형 태양전지에서 기존의 액체 전해질을 대체하기 위한 대안으로 제시되어 왔다. 기존의 액체 전해질은 높은 효율을 나타낼 수 있지만 장기적인 안정성 문제와 누액 문제로 인해 고분자 전해질막에 관한 관심은 지속적으로 증가하고 있으며 매년 이와 관련된 논문들이 활발히 보고되고 있다. 본 총설은 염료감응형 태양전지를 위한 고분자 전해질막의 개념과 개발에 대한 간단한 설명을 다루고 있으며 고분자 매트릭스의 개질, 유-무기 가소제 및 이온성 액체와 같은 첨가제의 도입에 따른 염료감응형 태양전지의 효율과 전기화학적 특성에 대해서도 최근의 연구들이 정리되어 있다.

Keywords

References

  1. B. O'Regan and M. Gratzel, "A low-cost, high-efficiency solar cell based on dye-sensitized colloidal $TiO_2$ films", Nature, 353, 737 (1991). https://doi.org/10.1038/353737a0
  2. M. H. Abdullah and M. Rusop, "Improved performance of dye-sensitized solar cell with a specially tailored TiO compact layer prepared by RF magnetron sputtering", J. Alloys Compd., 600, 60 (2014). https://doi.org/10.1016/j.jallcom.2014.01.139
  3. I. Ahmad, U. Khan, and Y. K. Gun'ko, "Graphene, carbon nanotube and ionic liquid mixtures: towards new quasi-solid state electrolytes for dye sensitised solar cells", J. Mater. Chem., 21, 16990 (2011). https://doi.org/10.1039/c1jm11537e
  4. S. H. Ahn, H. Jeon, K. J. Son, H. Ahn, W.-G. Koh, D. Y. Ryu, and J. H. Kim, "Efficiency improvement of dye-sensitized solar cells using graft copolymer- templated mesoporous $TiO_2$ films as an interfacial layer", J. Mater. Chem., 21, 1772 (2011). https://doi.org/10.1039/C0JM02706E
  5. V. Armel, J. M. Pringle, M. Forsyth, D. R. MacFarlane, D. L. Officer, and P. Wagner, "Ionic liquid electrolyte porphyrin dye sensitised solar cells", Chem. Commun., 46, 3146 (2010). https://doi.org/10.1039/b926087k
  6. B. Bills, M. Shanmugam, and M. F. Baroughi, "Effects of atomic layer deposited $HfO_2$ compact layer on the performance of dye-sensitized solar cells", Thin Solid Films, 519, 7803 (2011). https://doi.org/10.1016/j.tsf.2011.05.007
  7. D. Chen, F. Huang, Y. B. Cheng, and R. A. Caruso, "Mesoporous anatase $TiO_2$ beads with high surface areas and controllable pore sizes: A superior candidate for high-performance dye-sensitized solar cells", Adv. Mater., 21, 2206 (2009). https://doi.org/10.1002/adma.200802603
  8. H. Choi, C. Nahm, J. Kim, J. Moon, S. Nam, D.-R. Jung, and B. Park, "The effect of $TiCl_4$-treated $TiO_2$ compact layer on the performance of dye-sensitized solar cell", Current Applied Physics, 12, 737 (2012). https://doi.org/10.1016/j.cap.2011.10.011
  9. T.-T. Duong, H.-J. Choi, Q.-J. He, A.-T. Le, and S.-G. Yoon, "Enhancing the efficiency of dye sensitized solar cells with an $SnO_2$ blocking layer grown by nanocluster deposition", J. Alloys Compd., 561, 206 (2013). https://doi.org/10.1016/j.jallcom.2013.01.188
  10. X. Feng, K. Zhu, A. J. Frank, C. A. Grimes, and T. E. Mallouk, "Rapid charge yransport in dye-sensitized solar cells made from vertically aligned single- crystal rutile $TiO_2$ nanowires", Angew. Chem., 124, 2781 (2012). https://doi.org/10.1002/ange.201108076
  11. K. Hara, T. Sato, R. Katoh, A. Furube, Y. Ohga, A. Shinpo, S. Suga, K. Sayama, H. Sugihara, and H. Arakawa, "Molecular design of coumarin dyes for efficient dye-sensitized solar cells", J. Phys. Chem. B, 107, 597 (2003). https://doi.org/10.1021/jp026963x
  12. S. H. Kang, S. H. Choi, M. S. Kang, J. Y. Kim, H. S. Kim, T. Hyeon, and Y. E. Sung, "Nanorod- based dye-sensitized solar cells with improved charge collection efficiency", Adv. Mater., 20, 54 (2008). https://doi.org/10.1002/adma.200701819
  13. M. G. Kang, N.-G. Park, K. S. Ryu, S. H. Chang, and K.-J. Kim, "A 4.2% efficient flexible dye-sensitized $TiO_2$ solar cells using stainless steel substrate", Sol. Energy Mater. Sol. Cells, 90, 574 (2006). https://doi.org/10.1016/j.solmat.2005.04.025
  14. C. Jiang, X. Sun, K. Tan, G. Lo, A. Kyaw, and D. Kwong, "High-bendability flexible dye-sensitized solar cell with a nanoparticle-modified ZnO-nanowire electrode", Appl. Phys. Lett., 92, 143101 (2008). https://doi.org/10.1063/1.2905271
  15. M. S. Su'ait, M. Y. A. Rahman, and A. Ahmad, "Review on polymer electrolyte in dye-sensitized solar cells (DSSCs)", Solar Energy, 115, 452 (2015). https://doi.org/10.1016/j.solener.2015.02.043
  16. K. S. Lee, H. K. Lee, D. H. Wang, N.-G. Park, J. Y. Lee, O. O. Park, and J. H. Park, "Dye-sensitized solar cells with Pt-and TCO-free counter electrodes", Chem. Commun., 46, 4505 (2010). https://doi.org/10.1039/c0cc00432d
  17. Y. Saito, A. Ogawa, S. Uchida, T. Kubo, and H. Segawa, "Energy-storable dye-sensitized solar cells with interdigitated nafion/polypyrrole-Pt comb-like electrodes", Chem. Lett., 39, 488 (2010). https://doi.org/10.1246/cl.2010.488
  18. J. H. Kim, M.-S. Kang, Y. J. Kim, J. Won, N.-G. Park, and Y. S. Kang, "Dye-sensitized nanocrystalline solar cells based on composite polymer electrolytes containing fumed silica nanoparticles", Chem. Commun., 24, 1662 (2004).
  19. P. Wang, S. M. Zakeeruddin, I. Exnar, and M. Gratzel, "High efficiency dye-sensitized nanocrystalline solar cells based on ionic liquid polymer gel electrolyte", Chem. Commun., 14, 2972 (2002).
  20. D.-W. Kim, Y.-B. Jeong, S.-H. Kim, D.-Y. Lee, and J.-S. Song, "Photovoltaic performance of dye-sensitized solar cell assembled with gel polymer electrolyte", J. Power Sources, 149, 112 (2005). https://doi.org/10.1016/j.jpowsour.2005.01.058
  21. J. H. Lee, C. H. Park, M. S. Park, and J. H. Kim, "Poly(vinyl alcohol)-based polymer electrolyte membrane for solid-state Supercapacitor", Membr. J., 29, 30 (2019). https://doi.org/10.14579/MEMBRANE_JOURNAL.2019.29.1.30
  22. D. H. Kim and M. S. Kang, "Development and applications of pore-filled ion-exchange membranes", Membr. J., 28, 307 (2018). https://doi.org/10.14579/MEMBRANE_JOURNAL.2018.28.5.307
  23. S. H. Jeon, S. H. Choi, B. N. Lee, T. Y. Son, S. Y. Nam, S. J. Moon, S. H. Park, J. H. Kim, Y. M. Lee, and C. H. Park, "Property changes of anion exchange pore-filling membranes according to porous substrates", Membr. J., 27, 344 (2017). https://doi.org/10.14579/MEMBRANE_JOURNAL.2017.27.4.344
  24. M. S. Shin, M. S. Kang, and J. S. Park, "Preparation and characterizations of sulfonated graphene oxide (sGO)/Nafion composite membranes for polymer electrolyte fuel cells", Membr. J., 27, 53 (2017). https://doi.org/10.14579/MEMBRANE_JOURNAL.2017.27.1.53
  25. F. Bella, E. D. Ozzello, A. Sacco, S. Bianco, and R. Bongiovanni, "Polymer electrolytes for dye-sensitized solar cells prepared by photopolymerization of PEG-based oligomers", Int. J. Hydrogen Energy, 39, 3036 (2014). https://doi.org/10.1016/j.ijhydene.2013.06.110
  26. F. Bella, D. Pugliese, J. R. Nair, A. Sacco, S. Bianco, C. Gerbaldi, C. Barolo, and R. Bongiovanni, "A UV-crosslinked polymer electrolyte membrane for quasi-solid dye-sensitized solar cells with excellent efficiency and durability", PCCP, 15, 3706 (2013). https://doi.org/10.1039/c3cp00059a
  27. M. Imperiyka, A. Ahmad, S. A. Hanifah, and F. Bella, "A UV-prepared linear polymer electrolyte membrane for dye-sensitized solar cells", Physica B: Condensed Matter, 450, 151 (2014). https://doi.org/10.1016/j.physb.2014.05.053
  28. H.-L. Hsu, C.-F. Tien, Y.-T. Yang, and J. Leu, "Dye-sensitized solar cells based on agarose gel electrolytes using allylimidazolium iodides and environmentally benign solvents", Electrochim. Acta, 91, 208 (2013). https://doi.org/10.1016/j.electacta.2012.12.133
  29. K. M. Kim, N.-G. Park, K. S. Ryu, and S. H. Chang, "Characteristics of PVdF-HFP/$TiO_2$ composite membrane electrolytes prepared by phase inversion and conventional casting methods", Electrochim. Acta, 51, 5636 (2006). https://doi.org/10.1016/j.electacta.2006.02.038
  30. X. Zhang, C.-X. Wang, F.-Y. Li, and Y.-Y. Xia, "A quasi-solid-state dye-sensitized solar cell based on porous polymer electrolyte membrane", J. Photochem. Photobio. A, 194, 31 (2008). https://doi.org/10.1016/j.jphotochem.2007.07.011
  31. K. C. Sun, A. A. Arbab, I. A. Sahito, M. B. Qadir, B. J. Choi, S. C. Kwon, S. Y. Yeo, S. C. Yi, and S. H. Jeong, "A PVdF-based electrolyte membrane for a carbon counter electrode in dye-sensitized solar cells", RSC Adv., 7, 20908 (2017). https://doi.org/10.1039/C7RA00005G
  32. W. S. Chi, S. H. Ahn, H. Jeon, Y. G. Shul, and J. H. Kim, "Rubbery copolymer electrolytes containing polymerized ionic liquid for dye-sensitized solar cells", J. Solid State Electrochem., 16, 3037 (2012). https://doi.org/10.1007/s10008-012-1738-z