DOI QR코드

DOI QR Code

Study of Kaolin Particle Migration and Clogging Using a Micromodel

마이크로 모델을 이용한 고령토 입자의 유동 특성 연구

  • Ha, Minkyu (School of Civil Engrg., Chungbuk National Univ.) ;
  • Jung, Jongwon (School of Civil Engrg., Chungbuk National Univ.)
  • 하민규 (충북대학교 토목공학부) ;
  • 정종원 (충북대학교 토목공학부)
  • Received : 2019.03.07
  • Accepted : 2019.04.24
  • Published : 2019.04.30

Abstract

Hydrate dissociation is required to produce methane, which generates both water and methane. Thus, multiphase fluid flow and desalination are expected during methane production, which causes the fine migration and clogging in pores. The goal of this study is to explore the effects of both multiphase fluid flow and desalination on the migration and clogging of kaolin particles as typical fines. The results are as follows : (1) the larger the pore size is, the more mounting the critical clogging concentration is, (2) kaolin particles are more easily clustering and clogging in deionized water than salty water, and (3) the critical clogging concentration of kaolin in multiphase fluid flow is lower than in singlephase fluid flow. Therefore, clustering and clogging of kaolin within pore occur easily due to desalination and multiphase fluid flow when methane is produced from hydrates, and the efficiency of methane production is expected to decrease due to the degradation of permeability coefficient.

메탄을 생산하기 위한 하이드레이트 해리시 물과 메탄이 동시에 발생한다. 따라서, 지반 내 이온수의 담수화 및 다상유체의 흐름이 예상되고, 흙입자의 이동 및 막힘에 영향을 주게 된다. 본 연구는 담수화 및 다상유체 흐름이 대표적 세립토인 고령토 입자의 이동 및 막힘에 어떻게 영향을 주는지 규명하고자 한다. 연구 결과는 다음과 같다. (1) 공극의 크기가 커질수록 최소 막힘 발생 농도가 증가한다. (2) 고령토 입자는 소금물보다 담수에서 쉽게 뭉침 및 공극 막힘이 발생한다. (3) 다상유체 흐름 내에서 고령토의 최소 막힘 발생 농도는 단상유체 흐름에 비해 감소한다. 따라서, 하이드레이트로부터 메탄 생산 시, 담수화 및 다상유체의 흐름 발생으로 인해 고령토의 공극 막힘이 쉽게 발생할 수 있고, 이로 인해 투수계수의 저하로 메탄 생산효율의 저하가 예상됨을 설명하였다.

Keywords

GJBGC4_2019_v35n4_37_f0001.png 이미지

Fig. 1. Affecting parameters on fines migrating and clogging during a singlephase fluid flow (Cao et al., 2019)

GJBGC4_2019_v35n4_37_f0002.png 이미지

Fig. 2. Experimental setup (Cao et al., 2019)

GJBGC4_2019_v35n4_37_f0003.png 이미지

Fig. 3. Effects of pore throat size ratio on clogging

GJBGC4_2019_v35n4_37_f0004.png 이미지

Fig. 4. Effects of pore fluid salinity on clogging

GJBGC4_2019_v35n4_37_f0005.png 이미지

Fig. 5. Effects of pore fluid salinity on critical clogging concentration

GJBGC4_2019_v35n4_37_f0006.png 이미지

Fig. 6. Effects of multi-phase fluids flow on clogging

GJBGC4_2019_v35n4_37_f0007.png 이미지

Fig. 7. Effects of multi-phase fluids flow on critical clogging concentration

References

  1. Kampel G and Goldsztein GH. (200), Plugging in porous media: maximum clogged porosity and optimal filter topologies. Appl Phys Lett 92(8):084101. https://doi.org/10.1063/1.2883947
  2. MacDonald JC, Whitesides, GM. (2002), Poly(dimethylsiloxane) as a material for fabricating microfluidic devices. Acc Chem Res 35(7):491-499. https://doi.org/10.1021/ar010110q
  3. Valdes, J.R. and Santamarina, J.C. (2007), Particle transport in a nonuniform flow field: Retardation and clogging. Applied Physics Letters 90, 244101, doi:10.1063.1.2748850, 3p. https://doi.org/10.1063/1.2748850
  4. Jung, J., Cao, S. C., Shin, Y. H., Al‑Raoush, R. I., Alshibli, K., and Choi, J. W. (2018), A microfluidic pore model to study the migration of fine particles in single-phase and multi-phase flows in porous media. Microsyst. Technol., 24: 1071-1080. https://doi.org/10.1007/s00542-017-3462-1
  5. Bahk, J. J., Kim, D. H., Chun, J. H., Son, B. K., Kim, J. H., Ryu, B. J., Torres, M. E., Riedel, M., and Schultheiss, P. (2013), Gas hydrate occurrences and their relation to host sediment properties: Results from Second Ulleung Basin Gas Hydrate Drilling Expedition, East Sea. Marine and Petroleum Geology, 47: 21-29. https://doi.org/10.1016/j.marpetgeo.2013.05.006
  6. Winters, W. J., Wilcox-Cline, R. W., Long, P., Dewri, S. K., Kumar, P., Stern, L., and Kerr, L. (2014), Comparison of the physical and geotechnical properties of gas-hydrate-bearing sediments from offshore India and other gas-hydrate-reservoir systems. Marine and Petroleum Geology, 58, 139-167. https://doi.org/10.1016/j.marpetgeo.2014.07.024
  7. Egawa, K., Nishimura, O., Izumi, S., Fukami, E., Jin, Y., Kida, M., Konno, Y., Yoneda, J., Ito, T., Suzuki, K., Nakatsuka, Y., and Nagao, J. (2015), Bulk sediment mineralogy of gas hydrate reservoir at the East Nankai offshore production test site. Marine and Petroleum Geology, 66: 379-387. https://doi.org/10.1016/j.marpetgeo.2015.02.039
  8. Cha, Y., Yun, T., Kim, Y., Lee, J., and Kwon, T.-H. (2016), Geomechanical, Hydraulic and Thermal Characteristics of Deep Oceanic Sandy Sediments Recovered during the Second Ulleung Basin Gas Hydrate Expedition. Energies 9, 775, doi:710.3390/en9100775.
  9. Kwon, T. H., Lee, K. R., Cho, G. C., and Lee, J. Y. (2011), Geotechnical properties of deep oceanic sediments recovered from the hydrate occurrence regions in the Ulleung basin, Eastsea, offshore Korea, Mar. Petrol. Geol., 28, 1870-1883, doi: 10.1016/j.marpetgeo.2011.02.003.
  10. Park, T., Lee, J. Y., and Kwon, T. (2018), Effect of pore size distribution on dissociation temperature depression and phase boundary shift of gas hydrate in various fine-grained sediments. Energy & Fuels, 32 (4). DOI: 10.1021/acs.energyfuels.8b00074.
  11. Arnott, R. (1965), Particle sizes of clay minerals by small-angle X-ray scattering. The American Mineralogist, 50: 1563-1575.
  12. Sogami, I. and Ise, N. (1984), On the electrostatic interaction in macroionic solutions. The Journal of Chemical Physics, 81(12), 6320-6332. https://doi.org/10.1063/1.447541
  13. Sposito, G. (1989), The Chemistry of Soils. Oxford University Press, New York.
  14. Cao, S.C, Jang, J., Jung, J., Waite, W.F., Collett, T.S., and Kumar, P. (2019), 2D micromodel study of clogging behavior of fine-grained particles associated with gas hydrate production in NGHP-02 gas hydrate reservoir sediments, Marine and Petroelum Geology (In Press).