DOI QR코드

DOI QR Code

지진 시 파괴면을 고려한 중력식 안벽의 영구변위 평가

Estimation of Permanent Displacement of Gravity Quay Wall Considering Failure Surface under Seismic Loading

  • Han, Insuk (Dept. of Coastal and Ocean Engrg., Korea Institute of Ocean Science and Technology) ;
  • Ahn, Jae-Kwang (Earthquake and Volcano Research Div., KMA.) ;
  • Park, Duhee (Dept. of Civil and Environmental Engrg., Hanyang Univ.) ;
  • Kwon, Osoon (Dept. of Coastal and Ocean Engrg., Korea Institute of Ocean Science and Technology)
  • 투고 : 2018.12.10
  • 심사 : 2019.04.02
  • 발행 : 2019.04.30

초록

지진에 대한 중력식 안벽의 안정성은 구조물의 허용변위를 기준으로 평가하며, 외력으로 발생하는 변위를 계산하기 위하여 Newmark 활동블록 이론에 기초한 변위 경험식 혹은 수치해석을 사용한다. 수치해석의 경우 복잡한 지형 및 구조물에 대한 정밀한 분석이 가능하나 적절한 입력변수 및 환경설정의 어려움으로 전문가가 아니면 신뢰성 있는 결과 도출에 한계가 있다. Newmark 법의 변위 경험식은 지진파만을 가지고 영구변위를 추정하기에 수치해석보다 간편하여 널리 사용되고 있다. 하지만 변위 경험식들은 구조물의 특성과 활동면에 대한 파라메터가 없으며, 강체로 가정된 활동면에서 흙의 비선형 거동과 구조물과의 상호작용을 고려하지 않았다. 따라서 중력식 안벽의 지진 안정성 평가를 위해서는 앞서 언급한 한계점을 보완하는 새로운 변위 경험식이 필요하다. 본 연구에서는 수치해석을 통해 구조물 뒷채움재의 응답특성을 분석하여 최적의 활동면 산정법을 제시하고자 하였다. 이를 위해 유한요소해석을 수행하여 다양한 지진파에 따른 응답특성과 응력-변형률 관계를 분석하였다. 그 결과 뒷채움재의 응답특성과 활동면은 입력 지진파에 따라 달라지는 것으로 나타났다.

The stability of the gravity quay wall against earthquakes is evaluated on the basis of the allowable displacement of the wall. To estimate the displacement caused by external forces, empirical equations based on the Newmark sliding block method or numerical analysis are widely used. In numerical analysis, it is possible to analyze precisely a complicated site and structure, but difficult to set the appropriate parameters and environments; there are limitations in obtaining reliable results, depending on one's level of expertise. The Newmark method, with only seismic motions, is widely used because it is simpler than numerical simulations when estimating permanent displacement. However, the empirical equations do not have any parameters for the response characteristics and sliding block of the structure, and sliding blocks being assumed as rigid bodies does not consider the nonlinear behavior of the soil and interaction with the structure. Therefore, in order to evaluate the seismic stability of the gravity quay wall, a newly-developed empirical equation is needed to overcome the above-mentioned limitations. In this study, numerical simulations are performed to analyze the response characteristics of the backfill of the structure, and to propose an optimal method of calculating the active area. For this purpose, finite element analyses were performed to analyze the response characteristics, and stress-strain relationships for various seismic motions. As a result, the response characteristics, sliding block, and failure surface of the backfill vary depending on the input seismic motions.

키워드

GJBGC4_2019_v35n4_15_f0001.png 이미지

Fig. 1. Forces acting on active wedge in Mononobe-Okabe

GJBGC4_2019_v35n4_15_f0002.png 이미지

Fig. 2. Model of quay wall

GJBGC4_2019_v35n4_15_f0003.png 이미지

Fig. 3. Input motion of scaled 0.3g: (a) Motion 1: Loma Prieta (b) Motion 2: Ofunato (c) Motion 3: Northridge (d) Motion 4: Kobe (e) Motion 5: Coyote Lake (f) Motion 6: Hachinohe (g) Motion 7: Gyeongju (h) Response spectrum

GJBGC4_2019_v35n4_15_f0004.png 이미지

Fig. 4. Hysteretic curve and backbone curve

GJBGC4_2019_v35n4_15_f0005.png 이미지

Fig. 5. Total displacement contours using 0.5g scaled motions

GJBGC4_2019_v35n4_15_f0006.png 이미지

Fig. 6. Shear stress-shear strain curves from nodes at backfill (node location reference: Fig. 2)

GJBGC4_2019_v35n4_15_f0007.png 이미지

Fig. 7. Shear stress and strain curve from node F (Fig. 2) in Motion 1 (Loma Prieta 0.5g)

GJBGC4_2019_v35n4_15_f0008.png 이미지

Fig. 8. Comparison of the ratio of the acceleration response spectra of the backfill to input motion

GJBGC4_2019_v35n4_15_f0009.png 이미지

Fig. 9. Comparison of permanent displacement (void symbols=0.3g, solid symbols=0.5g)

GJBGC4_2019_v35n4_15_f0010.png 이미지

Fig. 10. Effect of the hydrostatic pressure on calculated permanent displacement (a) 0.3g scaled motions (b) 0.5g scaled motions

Table 1. Recorded motions

GJBGC4_2019_v35n4_15_t0001.png 이미지

Table 2. Material properties based on SPT-N at specific site

GJBGC4_2019_v35n4_15_t0002.png 이미지

참고문헌

  1. Bray, J.D. and Travasarou, T. (2009), "Pseudostatic Coefficient for Use in Simplified Seismic Slope Stability Evaluation", Journal of Geotechnical and Geoenvironmental Engineering, Vol.135, No.9, pp.1336-1340. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000012
  2. Dakoulas, P. and Gazetas, G. (2008), "Insight Into Seismic Earth and Water Pressures Against Caisson Quay Walls", Geotechnique, Vol.58, No.2, pp.95-111. https://doi.org/10.1680/geot.2008.58.2.95
  3. Darendeli, M.B. (2001), Development of a new family of normalized modulus reduction and material damping curves.
  4. Ghalandarzadeh, A., Orita, T., Towhata, I., and Yun, F. (1998), "Shaking Table Tests on Seismic Deformation of Gravity Quay Walls", Soils and foundations, 38(Special): pp.115-132. https://doi.org/10.3208/sandf.38.Special_115
  5. Iai, S., Ichii, K., Liu, H., and Morita, T. (1998), "Effective Stress Analyses of Port Structures", Soils and Foundations, 38(Special): pp.97-114.
  6. Kim, S., Jang, I., Chung, C., and Kim, M. (2004), "Evaluation of Seismic Displacement of Quay Walls Using Newmark Sliding Block Method", Jorunal of the Korean Geotechnical Society, 20(8): pp.123-133.
  7. Korea Ministry of Ocean and Fisheries (KMOF), Port and Harbor Design Standards 2016.
  8. Korea Ministry of Ocean and Fisheries (KMOF), Port and Harbor Design Standards (KDS 64 17 00) 2018.
  9. Lee, J., Park, D., Ahn, J., and Park, I. (2015), "Development of Permanent Displacement Model for Seismic Mountain Slope", Jorunal of the Korean Geotechnical Society, Vol.31, No.4, pp.57-66. https://doi.org/10.7843/kgs.2015.31.4.57
  10. Lee, M., Jo, S., Cho, H., Park, H., and Kim, D. (2017), "A Discussion on the Definitions of Seismic Coefficient for Gravity Quay Wall in Korea", Jorunal of the Earthquake Engineering Society of Korea, Vol.21, No.2, pp.77-85. https://doi.org/10.5000/EESK.2017.21.2.077
  11. Madabhushi, S. and Zeng, X. (1998), "Seismic Response of Gravity Quay Walls. II: Numerical Modeling", Journal of Geotechnical and Geoenvironmental Engineering, Vol.124, No.5, pp.418-427. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:5(418)
  12. Menq, F.Y. (2003), Dynamic properties of sandy and gravelly soils (Doctoral dissertation).
  13. Ministry of Land, Infrastructure and Transport (MOLIT), Roads and Retaining walls Design Standards 2008.
  14. Ministry of Land, Infrastructure and Transport (MOLIT), Seismic Performance evaluation & improvement revision of existing structures (Harbors). 2012: Korea Infrastructures Safety and Technology Corporation.
  15. Mononobe, N. (1929), On determination of earth pressure during earthquake, in Proc. World Engrg. Congress, Tokyo.
  16. Newmark, N.M. (1965), "Effects of Earthquakes on Dams and Embankments", Geotechnique, Vol.15, No.2, pp.139-160. https://doi.org/10.1680/geot.1965.15.2.139
  17. OCDI (2007), Technical standards for ports and harbour facilities and commentaries. The Overseas Coastal Area Development Institute of Japan.
  18. Okabe, S. (1926), "General Theory of Earth Pressures", J. Japan Soc. Civil Engineering, 12(1).
  19. Park, D. (2004), Estimation of non-linear seismic site effects for deep deposits of the Mississippi embayment. MAE Center Report 04-06.
  20. Psarropoulos, P., Klonaris, G., and Gazetas, G. (2005), "Seismic Earth Pressures on Rigid and Flexible Retaining Walls", Soil Dynamics and Earthquake Engineering, 25(7-10), pp.795-809. https://doi.org/10.1016/j.soildyn.2004.11.020
  21. Rathje, E.M. and Saygili, G. (2009), "Probabilistic Assessment of Earthquake-induced Sliding Displacements of Natural Slopes", Bulletin of the New Zealand Society for Earthquake Engineering, Vol.42, No.1, p.18. https://doi.org/10.5459/bnzsee.42.1.18-27
  22. Richards, R. and Elms, D.G. (1979), "Seismic behavior of Gravity Retaining Walls", Journal of Geotechnical and Geoenvironmental Engineering, 105(ASCE 14496).
  23. Simulia, D.S. (2012), Abaqus 6.12 documentation, Providence, Rhode Island, US.
  24. US-Navy, Design Criteria for Earthquake Hazard Mitigation of Navy Piers and Wharves. 1997, NAVAL FACILITIES ENGINEERING SERVICE CENTER PORT HUENEME CA.
  25. Whitman, R.V. and Liao, S. (1985), Seismic design of gravity retaining walls, MASSACHUSETTS INST OF TECH CAMBRIDGE DEPT OF CIVIL ENGINEERING.
  26. Wolff, T.F. (1989), Pile capacity prediction using parameter functions, in Predicted and Observed Axial Behavior of Piles: Results of a Pile Prediction Symposium, ASCE.
  27. Zeng, X. (1998), "Seismic Response of Gravity Quay Walls. I: Centrifuge Modeling", Journal of Geotechnical and Geoenvironmental Engineering, Vol.124, No.5, pp.406-417. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:5(406)
  28. Zeng, X. and Steedman, R. (1993), "On the behaviour of Quay Walls in Earthquakes", Geotechnique, Vol.43, No.3, pp.417-431. https://doi.org/10.1680/geot.1993.43.3.417
  29. 일본항만협회 (1999), Technical standards for Ports and Harbour Facilities in Japan. translated version of 港灣の 施設の 技術上の基準․同解說. 社團法人 日本港灣協會.