DOI QR코드

DOI QR Code

Electrical Properties of Plate Typed Shunt Resistors with Low TCR Property

낮은 TCR 특성을 가지는 플레이트 션트저항의 전기적 특성

  • Lim, Youngtaek (Electric Power Research Institute, Seoul National University) ;
  • Kim, Eun-Min (Electric Power Research Institute, Seoul National University) ;
  • Lee, Sang-Won (Research Center for Carbon Convergence Materials, Korea Institute of Carbon Convergence Technology) ;
  • Ahn, Jeong-Rae (Department of Carbon and Nano Materials Engineering, Jeonju University) ;
  • Lee, Sunwoo (Department of Electrical Information, Inha Technical College)
  • 임영택 (서울대학교 전력연구소) ;
  • 김은민 (서울대학교 전력연구소) ;
  • 이상원 (한국탄소융합기술원 원천소재연구본부) ;
  • 안정래 (전주대학교 탄소나노신소재공학과) ;
  • 이선우 (인하공업전문대학 전기정보과)
  • Received : 2019.02.02
  • Accepted : 2019.02.23
  • Published : 2019.05.01

Abstract

In this study, we fabricated plate-type shunt resistors with thermal stability by parallelly connecting metal alloy plates with positive temperature coefficient of resistance (TCR) and carbon nanotube (CNT) plates with negative TCR. The metal alloy plates, which were prepared by alloying Cu and Mn with a composition of 91 wt% of Cu and 9 wt% of Mn, showed around $800ppm/^{\circ}C$ of TCR, and the CNT plates prepared from the CNT solution by using the vacuum filtration method showed around $-800ppm/^{\circ}C$ of TCR. The shunt resistor that was fabricated by stacking metal alloy plates and CNT plates in this work showed about $46.93ppm/^{\circ}C$ of TCR. Therefore, we conclude that a shunt resistor with low TCR can be realized by simply adjusting the TCR of the metal alloy only, because the TCR of the CNT plate has an identical value.

Keywords

JJJRCC_2019_v32n3_219_f0001.png 이미지

Fig. 1. Fabrication process and stack structure of the hybrid resistor.

JJJRCC_2019_v32n3_219_f0002.png 이미지

Fig. 2. Resistance with temperature change of the MWCNT paper.

JJJRCC_2019_v32n3_219_f0003.png 이미지

Fig. 3. Resistance with temperature change of the Cu/Mn alloy plate.

JJJRCC_2019_v32n3_219_f0004.png 이미지

Fig. 4. TCR measured from the MWCNT paper, the Cu/Mn alloy plate, and the Hybrid resistor.

Table 1. Fabrication conditions of the MWCNT paper.

JJJRCC_2019_v32n3_219_t0001.png 이미지

Table 2. Resistance and TCR data.

JJJRCC_2019_v32n3_219_t0002.png 이미지

References

  1. E. M. Kim, S. H. Lee, D. K Cho, and S. H. Kim, Trans. Korean. Inst. Elect. Eng., 63, 1070 (2014). [DOI: https://doi.org/10.5370/kiee.2014.63.8.1070]
  2. J. H. Park and H. J. Cha, Trans. korean Inst. Power Electron., 7, 131 (2015).
  3. F. Galliana, P. P. Capra, and E. Gasparotto, Measurement, 46, 1630 (2013). [DOI: https://doi.org/10.1016/j.measurement.2012.11.031]
  4. S. S. Park, J. S. Koo, K. Y. Youn, and C. S. Kim, Proc. The Korean Society of Automotive Engineers Spring Conference Proceeding (The Korean Society of Automotive Engineers, Jeju, Korea, 2002) p. 1249.
  5. S. Yarlagadda, T. T. Hartley, and I. Husain, IEEE Trans. Ind. Appl., 49, 2720 (2013). [DOI: https://doi.org/10.1109/TIA.2013.2264794].
  6. M. S. Huh, S. W. Choi, H. G. Chun, S. C. Kwon, G. H. Lee, and T. Y. Cho, J. Vac. Soc., 6, 77 (1997).
  7. Y. G. Ko, C. W. Lee, S. NamGung, D. H. Lee, and D. H. Sin, Korean Soc. Technol. Plast., 18, 476 (2009). [DOI: https://doi.org/10.5228/KSPP.2009.18.6.476]
  8. E. M. Kim, S. C. Kim, and S. Lee, J. Korean Inst. Electr. Electron. Mater. Eng., 29, 365 (2016). [DOI: https://doi.org/10.4313/JKEM.2016.29.6.365]
  9. Y. Lim and S. Lee, J. Korean Inst. Electr. Electron. Mater. Eng., 30, 59 (2017). [DOI: https://doi.org/10.4313/JKEM.2017.30.1.59]