References
- Olson DG, McBride JE, Shaw AJ, Lynd LR. 2012. Recent progress in consolidated bioprocessing. Curr. Opin. Biotechnol. 23: 396-405. https://doi.org/10.1016/j.copbio.2011.11.026
- Bourdichon F, Casaregola S, Farrokh C, Frisvad JC, Gerds ML, Hammes WP, et al. 2012. Food fermentations: microorganisms with technological beneficial use. Int. J. Food Microbiol. 154: 87-97. https://doi.org/10.1016/j.ijfoodmicro.2011.12.030
- Szabo OE, Csiszar E, Koczka B, Kiss K. 2015. Ultrasonically assisted single stage and multiple extraction of enzymes produced by Aspergillus oryzae on a lignocellulosic substrate with solid-state fermentation. Biomass Bioenergy 75: 161-169. https://doi.org/10.1016/j.biombioe.2015.02.028
- Lin H, Wang Q, S hen Q, M a J, F u J, Z hao Y. 2 014. Engineering Aspergillus oryzae A-4 through the chromosomal insertion of foreign cellulase expression cassette to improve conversion of cellulosic biomass into lipids. PLoS One 9: e108442. https://doi.org/10.1371/journal.pone.0108442
- El-Ghonemy DH, Ali TH, El-Bondkly AM, Moharam Mel S, Talkhan FN. 2014. Improvement of Aspergillus oryzae NRRL 3484 by mutagenesis and optimization of culture conditions in solid-state fermentation for the hyper-production of extracellular cellulase. Antonie Van Leeuwenhoek 106: 853-864. https://doi.org/10.1007/s10482-014-0255-8
- Hirayama K, Watanabe H, Tokuda G, Kitamoto K, Arioka M. 2010. Purification and characterization of termite endogenous beta-1,4-endoglucanases produced in Aspergillus oryzae. Biosci. Biotechnol. Biochem. 74: 1680-1686. https://doi.org/10.1271/bbb.100296
- Maas RH, Springer J, Eggink G, Weusthuis RA. 2008. Xylose metabolism in the fungus Rhizopus oryzae: effect of growth and respiration on L(+)-lactic acid production. J. Ind. Microbiol. Biotechnol. 35: 569-578. https://doi.org/10.1007/s10295-008-0318-9
- Xu Q, Li S, Fu Y, Tai C, Huang H. 2010. Two-stage utilization of corn straw by Rhizopus oryzae for fumaric acid production. Bioresour. Technol. 101: 6262-6264. https://doi.org/10.1016/j.biortech.2010.02.086
-
Tran LH, Kitamoto N, Kawai K, Takamizawa K, Suzuki T. 2004. Cloning and expression of a
$NAD^+$ -dependent xylitol dehydrogenase gene (xdhA) of Aspergillus oryzae. J. Biosci. Bioeng. 97: 419-422. https://doi.org/10.1016/S1389-1723(04)70229-7 - Runquist D, Hahn-Hagerdal B, Bettiga M. 2010. Increased ethanol productivity in xylose-utilizing Saccharomyces cerevisiae via a randomly mutagenized xylose reductase. Appl. Environ. Microbiol. 76: 7796-7802. https://doi.org/10.1128/AEM.01505-10
- Chin JW, Cirino PC. 2011. Improved NADPH supply for xylitol production by engineered Escherichia coli with glycolytic mutations. Biotechnol. Prog. 27: 333-341. https://doi.org/10.1002/btpr.559
- Ahmad I, Shim WY, Kim JH. 2013. Enhancement of xylitol production in glycerol kinase disrupted Candida tropicalis by co-expression of three genes involved in glycerol metabolic pathway. Bioprocess Biosyst. Eng. 36: 1279-1284. https://doi.org/10.1007/s00449-012-0872-4
- Oh EJ, Ha SJ, Rin Kim S, Lee WH, Galazka JM, Cate JH, et al. 2013. Enhanced xylitol production through simultaneous co-utilization of cellobiose and xylose by engineered Saccharomyces cerevisiae. Metab. Eng. 15: 226-234. https://doi.org/10.1016/j.ymben.2012.09.003
- Au SW, Gover S, Lam VM, Adams MJ. 2000. Human glucose-6-phosphate dehydrogenase: the crystal structure reveals a structural NADP+ molecule and provides insights into enzyme deficiency. Structure 8: 293-303. https://doi.org/10.1016/S0969-2126(00)00104-0
- Ranzani AT, Cordeiro AT. 2017. Mutations in the tetramer interface of human glucose-6-phosphate dehydrogenase reveals kinetic differences between oligomeric states. FEBS Lett. 591: 1278-1284. https://doi.org/10.1002/1873-3468.12638
- Temel Y, Kocyigit UM. 2017. Purification of glucose-6-phosphate dehydrogenase from rat (Rattus norvegicus) erythrocytes and inhibition effects of some metal ions on enzyme activity. J. Biochem. Mol. Toxicol. 31(9).
-
Du Y, Xie G, Yang C, Fang B, Chen H. 2014. Construction of brewing-wine Aspergillus oryzae
$pyrG^-$ mutant by pyrG gene deletion and its application in homology transformation. Acta. Biochim. Biophys. Sin. (Shanghai) 46: 477-483. https://doi.org/10.1093/abbs/gmu022 - Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, et al. 2018. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 46: W296-W303. https://doi.org/10.1093/nar/gky427
- Bradford MM. 2015. A rapid method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1006/abio.1976.9999
- Kruger NJ. 2002. The Bradford method for protein quantitation, pp. 15-21. The protein protocols handbook, Springer,
- Bian M, Li S, Wei H, Huang S, Zhou F, Zhu Y, et al. 2018. Heteroexpression and biochemical characterization of a glucose-6-phosphate dehydrogenase from oleaginous yeast Yarrowia lipolytica. Protein Expr. Purif. 148: 1-8. https://doi.org/10.1016/j.pep.2018.03.007
- Purich DL. 2010. Enzyme kinetics: catalysis and control: a reference of theory and best-practice methods, pp. 335-338. 1st Ed. Elsevier.
-
Naylor CE, Gover S, Basak AK, Cosgrove MS, Levy HR, Adams MJ. 2001.
$NADP^+$ and$NAD^+$ binding to the dual coenzyme specific enzyme Leuconostoc mesenteroides glucose 6-phosphate dehydrogenase: different interdomain hinge angles are seen in different binary and ternary complexes. Acta crystallogr. D. Biol. Crystallogr. 57: 635-648. https://doi.org/10.1107/S0907444901003420 - Ulusu NN, Tandogan B, Tezcan FE. 2005. Kinetic properties of glucose-6-phosphate dehydrogenase from lamb kidney cortex. Biochimie 87: 187-190. https://doi.org/10.1016/j.biochi.2004.11.002
- Verma A, Suthar MK, Doharey PK, Gupta S, Yadav S, Chauhan PMS, et al. 2013. Molecular cloning and characterization of glucose-6-phosphate dehydrogenase from Brugia malayi. Parasitology 140: 897-906. https://doi.org/10.1017/S0031182013000115
- Adediran SA. 1991. Kinetic properties of normal human erythrocyte glucose-6-phosphate dehydrogenase dimers. Biochimie. 73: 1211-1218. https://doi.org/10.1016/0300-9084(91)90006-M
- Wennekes LM, Goosen T, van den Broek PJ, van den Broek HW. 1993. Purification and characterization of glucose-6-phosphate dehydrogenase from Aspergillus niger and Aspergillus nidulans. J. Gen. Microbiol. 139: 2793-2800. https://doi.org/10.1099/00221287-139-11-2793
- Jr NW, Jr DR. 1984. Purification and characterization of glucose-6-phosphate dehydrogenase from Aspergillus parasiticus. Arch. Biochem. Biophys. 228: 113-119. https://doi.org/10.1016/0003-9861(84)90052-3
- Omodele Ibraheem IOAaAA. 2005. Purification and properties of glucose 6-phosphate dehydrogenase from Aspergillus aculeatus. J. Biochem. Mol. Biol. 38: 584-590.
- Rowland P, Basak AK, Gover S, Levy HR, Adams MJ. 1994. The three-dimensional structure of glucose 6-phosphate dehydrogenase from Leuconostoc mesenteroides refined at 2.0 A resolution. Structure 2: 1073-1087. https://doi.org/10.1016/S0969-2126(94)00110-3
- Shreve DS, Levy HR. 1980. Kinetic mechanism of glucose-6-phosphate dehydrogenase from the lactating rat mammary gland. Implications for regulation. J. Biol. Chem. 255: 2670-2677. https://doi.org/10.1016/S0021-9258(19)85788-5
- Aksoy Y, Ogus IH, Oauzer N. 2001. Purification and some properties of human placental glucose-6-phosphate dehydrogenase. Protein Expr. Purif. 21: 286-292. https://doi.org/10.1006/prep.2000.1370
- Ulusu NN, Kus MS, Acan NL, Tezcan EF. 1999. A rapid method for the purification of glucose-6-phosphate dehydrogenase from bovine lens. Int. J. Biochem. Cell Biol. 31: 787-796. https://doi.org/10.1016/S1357-2725(99)00019-9
- Moritz B, Striegel K, Graaf AA, De, Sahm H. 2010. Kinetic properties of the glucose-6-phosphate and 6-phosphogluconate dehydrogenases from Corynebacterium glutamicum and their application for predicting pentose phosphate pathway flux in vivo. FEBS J. 267: 3442-3452.
- Tsai CS, Chen Q. 1998. Purification and kinetic characterization of hexokinase and glucose-6-phosphate dehydrogenase from Schizosaccharomyces pombe. Biochem. Cell Biol. 76: 107-113. https://doi.org/10.1139/o98-001
- Levy HR, Christoff M, Ingulli J, Ho EML. 1983. Glucose-6-phosphate dehydrogenase from Leuconostoc mesenteroides: Revised kinetic mechanism and kinetics of ATP inhibition. Arch. Biochem. Biophys. 222: 473-488. https://doi.org/10.1016/0003-9861(83)90546-5
- Wang XT, Au SW, L am VM, E ngel PC. 2002. Recombinant human glucose-6-phosphate dehydrogenase. Evidence for a rapid-equilibrium random-order mechanism. Eur. J. Biochem. 269: 3417-3424. https://doi.org/10.1046/j.1432-1033.2002.03015.x
- Hansen T, Schlichting B, Schonheit P. 2002. Glucose-6-phosphate dehydrogenase from the hyperthermophilic bacterium Thermotoga maritima: expression of the g6pd gene and characterization of an extremely thermophilic enzyme. FEMS Microbiol. Lett. 216: 249-253. https://doi.org/10.1111/j.1574-6968.2002.tb11443.x
- Acero-Navarro KE, Jimenez-Ramirez M, Villalobos MA, Vargas-Martinez R, Perales-Vela HV, Velasco-Garcia R. 2018. Cloning, overexpression, and purification of glucose-6-phosphate dehydrogenase of Pseudomonas aeruginosa. Protein Expr. Purif. 142: 53-61. https://doi.org/10.1016/j.pep.2017.10.004
- Wang XT, Lam VM, Engel PC. 2005. Marked decrease in specific activity contributes to disease phenotype in two human glucose 6-phosphate dehydrogenase mutants, G6PD(Union) and G6PD(Andalus). Hum. Mutat. 26: 284. https://doi.org/10.1002/humu.9367
- Schuurmann J, Quehl P, Lindhorst F, Lang K, Jose J. 2017. Autodisplay of glucose-6-phosphate dehydrogenase for redox cofactor regeneration at the cell surface. Biotechnol. Bioeng. 114: 1658-1669. https://doi.org/10.1002/bit.26308
- Ortiz C, Moraca F, Medeiros A, Botta M, Hamilton N, Comini MA. 2016. Binding mode and selectivity of steroids towards glucose-6-phosphate dehydrogenase from the pathogen Trypanosoma cruzi. Molecules 21: 368. https://doi.org/10.3390/molecules21030368
- Rendon JL, del Arenal IP, Guevara-Flores A, Mendoza-Hernandez G, Pardo JP. 2008. Glucose 6-phosphate dehydrogenase from larval Taenia crassiceps (cysticerci): purification and properties. Parasitol. Res. 102: 1351-1357. https://doi.org/10.1007/s00436-008-0917-4
Cited by
- Molecular Cloning and Exploration of the Biochemical and Functional Analysis of Recombinant Glucose-6-Phosphate Dehydrogenase from Gluconoacetobacter diazotrophicus PAL5 vol.20, pp.21, 2019, https://doi.org/10.3390/ijms20215279