References
- Ott M, Gogvadze V, Orrenius S, Zhivotovsky B. 2007. Mitochondria, oxidative stress and cell death. Apoptosis 12: 913-922. https://doi.org/10.1007/s10495-007-0756-2
- Villanueva C, Kross RD. 2012. Antioxidant-induced stress. Int. J. Mol. Sci. 13: 2091-2109. https://doi.org/10.3390/ijms13022091
- Ayer A, Gourlay CW, Dawes IW. 2014. Cellular redox homeostasis, reactive oxygen species and replicative ageing in Saccharomyces cerevisiae. FEMS Yeast Res. 14: 60-72. https://doi.org/10.1111/1567-1364.12114
- Traber MG, Stevens JF. 2011. Vitamins C and E: beneficial effects from a mechanistic perspective. Free Radic. Biol. Med. 51: 1000-1013. https://doi.org/10.1016/j.freeradbiomed.2011.05.017
- Buettner GR. 1986. Ascorbate autoxidation in the presence of iron and copper chelates. Free Radic. Res. Commun. 1: 349-353. https://doi.org/10.3109/10715768609051638
- De Francesco EM, Bonuccelli G, Maggiolini M, Sotgia F, Lisanti MP. 2017. Vitamin C and doxycycline: a synthetic lethal combination therapy targeting metabolic flexibility in cancer stem cells (CSCs). Oncotarget 8: 67269-67286. https://doi.org/10.18632/oncotarget.18428
- Amorati R, Zotova J, Baschieri A, Valgimigli L. 2015. Antioxidant activity of magnolol and honokiol: kinetic and mechanistic investigations of their reaction with peroxyl radicals. J. Org. Chem. 80: 10651-10659. https://doi.org/10.1021/acs.joc.5b01772
- Liao K, Sun L. 2018. The Roles of Hsp90-calcineurin pathway in the antifungal activity of honokiol. J. Microbiol. Biotechnol. 28: 1086-1093. https://doi.org/10.4014/jmb.1801.01024
- Sun LM, Liao K. 2018. Saccharomyces cerevisiae Hog1 MAP kinase pathway is activated in response to honokiol exposure. J. Appl. Microbiol. 124: 754-763. https://doi.org/10.1111/jam.13649
- Sun L, Liao K, Hang C, Wang D. 2017. Honokiol induces reactive oxygen species-mediated apoptosis in Candida albicans through mitochondrial dysfunction. PLoS One 12: e172228.
- Sun L, Liao K, Wang D. 2017. Honokiol induces superoxide production by targeting mitochondrial respiratory chain complex I in Candida albicans. PLoS One 12: e184003.
- Sun L, Liao K, Wang D. 2015. Effects of magnolol and honokiol on adhesion, yeast-hyphal transition, and formation of biofilm by Candida albicans. PLoS One 10: e117695.
- Clinical and Laboratory Standards Institute (CLSI). 2008. M27-A3, Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts: Approved Standard, 3rd ed. Wayne, PA: Clinical and Laboratory Standards Institute.
- Klepser ME, Wolfe EJ, Jones RN, Nightingale CH, Pfaller MA. 1997. Antifungal pharmacodynamic characteristics of fluconazole and amphotericin B tested against Candida albicans. Antimicrob. Agents Chemother. 41: 1392-1395. https://doi.org/10.1128/AAC.41.6.1392
- Takahashi M, Shibata M, Niki E. 2001. Estimation of lipid peroxidation of live cells using a fluorescent probe, diphenyl-1-pyrenylphosphine. Free Radic. Biol. Med. 31: 164-174. https://doi.org/10.1016/S0891-5849(01)00575-5
- Cossarizza A, Salvioli S. 2001. Flow cytometric analysis of mitochondrial membrane potential using JC-1. Curr. Protoc. Cytom. Chapter 9: unit 9-14.
- Smiley ST, Reers M, Mottola-Hartshorn C, Lin M, Chen A, Smith TW, et al. 1991. Intracellular heterogeneity in mitochondrial membrane potentials revealed by a J-aggregate-forming lipophilic cation JC-1. Proc. Natl. Acad. Sci. USA 88: 3671-3675. https://doi.org/10.1073/pnas.88.9.3671
- Sun L, Zhao Y, Yuan H, Li X, Cheng A, Lou H. 2011. Solamargine, a steroidal alkaloid glycoside, induces oncosis in human K562 leukemia and squamous cell carcinoma KB cells. Cancer Chemother. Pharmacol. 67: 813-821. https://doi.org/10.1007/s00280-010-1387-9
- Chang W, Zhang M, Li Y, Lou H. 2015. Flow cytometry-based method to detect persisters in Candida albicans. Antimicrob. Agents Chemother. 59: 5044-5048. https://doi.org/10.1128/AAC.00255-15
- Morita M, Naito Y, Yoshikawa T, Niki E. 2016. Plasma lipid oxidation induced by peroxynitrite, hypochlorite, lipoxygenase and peroxyl radicals and its inhibition by antioxidants as assessed by diphenyl-1-pyrenylphosphine. Redox Biol. 8: 127-135. https://doi.org/10.1016/j.redox.2016.01.005
- Dellinger M, Geze M. 2001. Detection of mitochondrial DNA in living animal cells with fluorescence microscopy. J. Microsc. 204: 196-202. https://doi.org/10.1046/j.1365-2818.2001.00954.x
- Yun J, Mullarky E, Lu C, Bosch KN, Kavalier A, Rivera K, et al. 2015. Vitamin C selectively kills KRAS and BRAF mutant colorectal cancer cells by targeting GAPDH. Science 350: 1391-1396. https://doi.org/10.1126/science.aaa5004
- Pelicano H, Martin DS, Xu RH, Huang P. 2006. Glycolysis inhibition for anticancer treatment. Oncogene 25: 4633-4646. https://doi.org/10.1038/sj.onc.1209597
- Wisplinghoff H, Seifert H, Wenzel RP, Edmond MB. 2003. Current trends in the epidemiology of nosocomial bloodstream infections in patients with hematological malignancies and solid neoplasms in hospitals in the United States. Clin. Infect. Dis. 36: 1103-1110. https://doi.org/10.1086/374339
- Bondaryk M, Kurzatkowski W, Staniszewska M. 2013. Antifungal agents commonly used in the superficial and mucosal candidiasis treatment: mode of action and resistance development. Postepy Dermatol. Alergol. 30: 293-301.
- Teodoro GR, Ellepola K, Seneviratne CJ, Koga-Ito CY. 2015. Potential use of phenolic acids as anti-Candida agents: a review. Front Microbiol. 6: 1420. https://doi.org/10.3389/fmicb.2015.01420
- Sun L, Hang C, Liao K. 2018. Synergistic effect of caffeic acid phenethyl ester with caspofungin against Candida albicans is mediated by disrupting iron homeostasis. Food Chem. Toxicol. 116: 51-58. https://doi.org/10.1016/j.fct.2018.04.014
- Sun L, Liao K, Hang C. 2018. Caffeic acid phenethyl ester synergistically enhances the antifungal activity of fluconazole against resistant Candida albicans. Phytomedicine 40: 55-58. https://doi.org/10.1016/j.phymed.2017.12.033
- Labriola D, Livingston R. 1999. Possible interactions between dietary antioxidants and chemotherapy. Oncology (Williston Park) 13: 1003-1008,
- Belhachemi MH, Boucherit K, Boucherit-Otmani Z, Belmir S, Benbekhti Z. 2014. Effects of ascorbic acid and alphatocopherol on the therapeutic index of amphotericin B. J. Mycol. Med. 24: e137-e142. https://doi.org/10.1016/j.mycmed.2014.04.003
- Yin H, Xu L, Porter NA. 2011. Free radical lipid peroxidation: mechanisms and analysis. Chem. Rev. 111: 5944-5972. https://doi.org/10.1021/cr200084z
- Zhu X, Zou S, Li Y, Liang Y. 2017. Transcriptomic analysis of Saccharomyces cerevisiae upon honokiol treatment. Res. Microbiol. 168: 626-635. https://doi.org/10.1016/j.resmic.2017.04.007
- Stohs SJ, Bagchi D. 1995. Oxidative mechanisms in the toxicity of metal ions. Free Radic. Biol. Med. 18: 321-336. https://doi.org/10.1016/0891-5849(94)00159-H
- Carr A, Frei B. 1999. Does vitamin C act as a pro-oxidant under physiological conditions? FASEB J. 13: 1007-1024. https://doi.org/10.1096/fasebj.13.9.1007
- Clement MV, Ramalingam J, Long LH, Halliwell B. 2001. The in vitro cytotoxicity of ascorbate depends on the culture medium used to perform the assay and involves hydrogen peroxide. Antioxid. Redox Signal. 3: 157-163. https://doi.org/10.1089/152308601750100687
- Halliwell B. 2013. The antioxidant paradox: less paradoxical now? Br. J. Clin. Pharmacol. 75: 637-644. https://doi.org/10.1111/j.1365-2125.2012.04272.x
- Gohil K, Packer L, de Lumen B, Brooks GA, Terblanche SE. 1986. Vitamin E deficiency and vitamin C supplements: exercise and mitochondrial oxidation. J. Appl. Physiol. 60: 1986-1991. https://doi.org/10.1152/jappl.1986.60.6.1986
- Bonuccelli G, De Francesco EM, de Boer R, Tanowitz HB, Lisanti MP. 2017. NADH autofluorescence, a new metabolic biomarker for cancer stem cells: Identification of vitamin C and CAPE as natural products targeting "stemness". Oncotarget 8: 20667-20678. https://doi.org/10.18632/oncotarget.15400
Cited by
- Kalopanaxsaponin A induces reactive oxygen species mediated mitochondrial dysfunction and cell membrane destruction in Candida albicans vol.15, pp.11, 2019, https://doi.org/10.1371/journal.pone.0243066
- The Effect of Honokiol on Ergosterol Biosynthesis and Vacuole Function in Candida albicans vol.30, pp.12, 2019, https://doi.org/10.4014/jmb.2008.08019
- Procyanidin B1 promotes in vitro maturation of pig oocytes by reducing oxidative stress vol.88, pp.1, 2021, https://doi.org/10.1002/mrd.23440