DOI QR코드

DOI QR Code

Biosynthetic Pathway of Carotenoids in Rhodotorula and Strategies for Enhanced Their Production

  • Tang, Wei (School of Medicine and Pharmacy, Ocean University of China) ;
  • Wang, Yue (School of Medicine and Pharmacy, Ocean University of China) ;
  • Zhang, Jun (School of Medicine and Pharmacy, Ocean University of China) ;
  • Cai, Yali (School of Medicine and Pharmacy, Ocean University of China) ;
  • He, Zengguo (School of Medicine and Pharmacy, Ocean University of China)
  • Received : 2019.01.10
  • Accepted : 2019.03.09
  • Published : 2019.04.28

Abstract

Rhodotorula is a group of pigment-producing yeasts well known for its intracellular biosynthesis of carotenoids such as ${\beta}-carotene$, ${\gamma}-carotene$, torulene and torularhodin. The great potential of carotenoids in applications in food and feed as well as in health products and cosmetics has generated a market value expected to reach over $2.0 billion by 2022. Due to growing public concern over food safety, the demand for natural carotenoids is rising, and this trend significantly encourages the use of microbial fermentation for natural carotenoid production. This review covers the biological properties of carotenoids and the most recent findings on the carotenoid biosynthetic pathway, as well as strategies for the metabolic engineering methods for the enhancement of carotenoid production by Rhodotorula. The practical approaches to improving carotenoid yields, which have been facilitated by advancements in strain work as well as the optimization of media and fermentation conditions, were summarized respectively.

Keywords

References

  1. Hawksworth DL, Kirk PM, Sutton BC, Pegler DN. 1996. Ainsworth & Bisby's dictionary of the fungi. Revista Do Instituto De Medicina Tropical De Sao Paulo 38: 17-19.
  2. Kurtzman CP. 2011. The Yeasts, a Taxonomic Study, pp. 233-234. 5th Ed. Taylor & Francis, London.
  3. Wirth F, Goldani LZ. 2012. Epidemiology of Rhodotorula: an emerging pathogen. Interdiscip. Perspect. Infect. Dis. 2012: 465717. https://doi.org/10.1155/2012/465717
  4. Rose AH, Harrison JS. 1987. The Yeasts (ed by Rose AH, Harrison JS). 2: 181-250.
  5. Prabhala RH, Braune LM, Garewal HS, Watson RR. 2010. Influence of beta-carotene on immune functions. Ann. NY Acad. Sci. 691: 262-263.
  6. Hennekens CH. 1997. ${\beta}$-Carotene supplementation and cancer prevention. Nutrition 13: 697-699. https://doi.org/10.1016/S0899-9007(97)83019-5
  7. Andrew McWilliams. 2018. The global market for carotenoids. Available from https://www.bccresearch.com/market-research/food-and-beverage/the-global-market-for-carotenoids-fod025f.html. Accessed Jun. 2018.
  8. Buzzini P, Innocenti M, Turchetti B, Libkind D, Van BM, Mulinacci N. 2007. Carotenoid profiles of yeasts belonging to the genera Rhodotorula, Rhodosporidium, Sporobolomyces, and Sporidiobolus. Can. J. Microbiol. 53: 1024-1031. https://doi.org/10.1139/W07-068
  9. Villoutreix J. 1960. Les carotenoides de Rhodotorula mucilaginosa, etude de leur biosynthese a l'aide de l'analyse de mutants et de l'emploi d'un inhibiteur de la carotenogenese. Biochim. Biophys. Acta 40: 442-457. https://doi.org/10.1016/0006-3002(60)91385-8
  10. Landolfo S, Ianiri G, Camiolo S, Porceddu A, Mulas G, Chessa R, et al. 2018. CAR gene cluster and transcript levels of carotenogenic genes in Rhodotorula mucilaginosa. Microbiology 164: 78-87. https://doi.org/10.1099/mic.0.000588
  11. Kot AM, Blazejak S, Gientka I, Kieliszek M, Brys J. 2018. Torulene and torularhodin: "new" fungal carotenoids for industry? Microb. Cell. Fact. 17: 49. https://doi.org/10.1186/s12934-018-0893-z
  12. Azmi Wamik TM, Kumari Priyanka. 2011. Production of a heat stable ${\beta}$-carotene with antioxidant activity by Rhodotorula sp. Int. Food Ferment. Technol. 1: 83-91.
  13. Perrier V, Dubreucq E, Galzy P. 1995. Fatty acid and carotenoid composition of Rhodotorula strains. Arch. Microbiol. 164: 173-179. https://doi.org/10.1007/BF02529968
  14. Rodriguez-Concepcion M, Stange C. 2013. Biosynthesis of carotenoids in carrot: an underground story comes to light. Arch. Biochem. Biophys. 539: 110-116. https://doi.org/10.1016/j.abb.2013.07.009
  15. Fromageot C, Tchang JL. 1938. Sur les pigments carotenoides de Rhodotorula Sanniei. Arch. Mikrobiol. 9: 424-433. https://doi.org/10.1007/BF00407369
  16. Bonner J, Sandoval A, Tang YW, Zechmeister L. 1946. Changes in polyene synthesis induced by mutation in a red yeast. Arch. Biochem. 10: 113.
  17. Razavi SH, Marc I. 2006. Effect of temperature and pH on the growth kinetics and carotenoid production by Sporobolomyces ruberrimus H110 using technical glycerol as carbon source. Iran. J. Chem. Chem. Eng. 25: 59-64.
  18. Ungureanu C, Ferdes M. 2012. Evaluation of Antioxidant and Antimicrobial Activities of Torularhodin. Adv. Sci. Lett. 18: 50-53(54). https://doi.org/10.1166/asl.2012.4403
  19. Sakaki H, Nochide H, Komemushi S, Miki W. 2002. Effect of active oxygen species on the productivity of torularhodin by Rhodotorula glutinis No.21. J. Biosci. Bioeng. 93: 338-340. https://doi.org/10.1016/S1389-1723(02)80040-8
  20. Sakaki H, Nakanishi T, Tada A, Miki W, Komemushi S. 2001. Activation of torularhodin production by Rhodotorula glutinis using weak white light irradiation. J. Biosci. Bioeng. 92: 294-297. https://doi.org/10.1016/S1389-1723(01)80265-6
  21. Du C, Li Y, Guo Y, Han M, Zhang W, Qian H. 2016. The suppression of torulene and torularhodin treatment on the growth of PC-3 xenograft prostate tumors. Biochem. Biophys. Res. Commun. 469: 1146-1152. https://doi.org/10.1016/j.bbrc.2015.12.112
  22. Chao D, Guo Y, Cheng Y, Mei H, Zhang W, He Q. 2017. Torulene and torularhodin, protects human prostate stromal cells from hydrogen peroxide-induced oxidative stress damage through the regulation of Bcl-2/Bax mediated apoptosis. Free Radic. Res. 51: 113-123. https://doi.org/10.1080/10715762.2017.1285024
  23. Libkind D, Brizzio S, Van BM. 2004. Rhodotorula mucilaginosa, a carotenoid producing yeast strain from a Patagonian high-altitude lake. Folia. Microbiol. 49: 19-25. https://doi.org/10.1007/BF02931640
  24. Aksu Z, Eren AT. 2007. Production of carotenoids by the isolated yeast of Rhodotorula glutinis. Biochem. Eng. J. 35: 107-113. https://doi.org/10.1016/j.bej.2007.01.004
  25. Tkacova J FK, Klempova T, et al. 2015. Screening of carotenoidproducing Rhodotorula strains isolated from natural sources. Acta Chimica Slovaca 8: 34-38. https://doi.org/10.1515/acs-2015-0007
  26. Bhosale P, Gadre RV. 2001. Production of ${\beta}$-carotene by a Rhodotorula glutinis mutant in sea water medium. Bioresour. Technol. 76: 53-55. https://doi.org/10.1016/S0960-8524(00)00075-4
  27. Wang SL, Sun JS, Han BZ, Wu XZ. 2010. Optimization of beta-carotene production by Rhodotorula glutinis using high hydrostatic pressure and response surface methodology. J. Food. Sci. 72: 325-329. https://doi.org/10.1111/j.1750-3841.2007.00495.x
  28. Liu S, Li Q, Liu HL, Jia T, Xie DP. 2012. Mutation breeding of high-yield carotenoid producing Rhodotorula mucilaginosa by N-+ implantation and optimization of solid-state fermentation conditions for carotenoid production. Food Sci. 23: 244-248.
  29. Cong L, Chi Z, Li J, Wang X. 2007. Enhanced carotenoid production by a mutant of the marine yeast Rhodotorula sp. hidai. J. Ocean. U. China. 6: 66-71. https://doi.org/10.1007/s11802-007-0066-x
  30. Yolmeh M, Khomeiri M. 2016. Using physical and chemical mutagens for enhanced carotenoid production from Rhodotorula glutinis (PTCC 5256). Biocatal. Agric. Biotechnol. 8: 158-166. https://doi.org/10.1016/j.bcab.2016.09.004
  31. Zhang Z, Zhang X, Tan T. 2014. Lipid and carotenoid production by Rhodotorula glutinis under irradiation/high-temperature and dark/low-temperature cultivation. Bioresour. Technol. 157: 149-153. https://doi.org/10.1016/j.biortech.2014.01.039
  32. Yen HW, Yang YC. 2012. The effects of irradiation and microfiltration on the cells growing and total lipids production in the cultivation of Rhodotorula glutinis. Bioresour. Technol. 107: 539-541. https://doi.org/10.1016/j.biortech.2011.12.134
  33. Yen HW, Zhang Z. 2011. Enhancement of cell growth rate by light irradiation in the cultivation of Rhodotorula glutinis. Bioresour. Technol. 102: 9279-9281. https://doi.org/10.1016/j.biortech.2011.06.062
  34. Hayman EP, Yokoyama H, Chichester CO, Simpson KL. 1974. Carotenoid biosynthesis in Rhodotorula glutinis. J. Bacteriol. 120: 1339. https://doi.org/10.1128/JB.120.3.1339-1343.1974
  35. Simpson KL, Nakayama TO, Chichester CO. 1964. Biosynthesis of yeast carotenoids. J. Bacteriol. 88: 1688-1694. https://doi.org/10.1128/JB.88.6.1688-1694.1964
  36. Buzzini P, Martini A. 2000. Production of carotenoids by strains of Rhodotorula glutinis cultured in raw materials of agro-industrial origin. Bioresour. Technol. 71: 41-44. https://doi.org/10.1016/S0960-8524(99)00056-5
  37. Bhosale P, Gadre RV. 2010. Manipulation of temperature and illumination conditions for enhanced ${\beta}$-carotene production by mutant 32 of Rhodotorula glutinis. Lett. Appl. Microbiol. 34: 349-353. https://doi.org/10.1046/j.1472-765X.2002.01095.x
  38. Komemushi S, Sakaki H, Yokoyama H, Fujita T. 1994. Effect of barium and other metals on the growth of a D-lactic acid assimilating yeast Rhodotorula glutinis N21. J. Antibact. Antifungal. Agent 22: 583-587.
  39. Buzzini P, Martini A, Gaetani M, Turchetti B, Pagnoni UM, Davoli P. 2005. Optimization of carotenoid production by Rhodotorula graminis DBVPG 7021 as a function of trace element concentration by means of response surface analysis. Enzyme. Microb. Technol. 36: 687-692. https://doi.org/10.1016/j.enzmictec.2004.12.028
  40. Kim BK, Park PK, Chae HJ, Kim EY. 2004. Effect of phenol on ${\beta}$-carotene content in total carotenoids production in cultivation of Rhodotorula glutinis. Korean. J. Chem. Eng. 21: 689-692. https://doi.org/10.1007/BF02705506
  41. Britton G, Singh RK, Malhotra HC, Goodwin TW, Ben-Aziz A. 1977. Biosynthesis of 1,2-dihydrocarotenoids in Rhodopseudomonas viridis: experiments with inhibitors. Phytochemistry 16: 1561-1566. https://doi.org/10.1016/0031-9422(77)84023-5
  42. Squina FM, Mercadante AZ. 2010. Influence of nicotine and diphenylamine on the carotenoid composition of Rhodotorula strains. J. Food. Biochem. 29: 638-652. https://doi.org/10.1111/j.1745-4514.2005.00030.x
  43. Mata-Gomez LC, Montanez JC, Mendez-Zavala A, Aguilar CN. 2014. Biotechnological production of carotenoids by yeasts: an overview. Microb. Cell. Fact. 13: 12. https://doi.org/10.1186/1475-2859-13-12
  44. Fang TJ, Cheng Y-S. 1993. Improvement of Astaxanthin production by Phaffia rhodozyma through mutation and optimization of culture conditions. J. Ferment. Bioeng. 75: 466-469. https://doi.org/10.1016/0922-338X(93)90099-T
  45. Frengova GI, Simova ED, Beshkova DM. 2004. Improvement of carotenoid-synthesizing yeast Rhodotorula rubra by chemical mutagenesis. Z. Naturforsch. C. 59: 99-103. https://doi.org/10.1515/znc-2004-1-220
  46. Wang SL, Liu W, Wang HX, Lv CH. 2012. Ultra high-pressure and ion implantation combined mutagenesis to improve the production of ${\beta}$-carotene from red yeast. Adv. Mater. Res. II 554-556: 1165-1169. https://doi.org/10.4028/www.scientific.net/AMR.554-556.1165
  47. Nasrabadi MRN, Razavi SH. 2011. Optimization of ${\beta}$-carotene production by a mutant of the lactose-positive yeast Rhodotorula acheniorum, from whey ultrafiltrate. Food. Sci. Biotechnol. 20: 445-454. https://doi.org/10.1007/s10068-011-0062-1
  48. Sakaki H, Nakanishi T, Komemushi S, Namikawa K, Miki W. 2001. Torularhodin as a potent scavenger against peroxyl radicals isolated from a soil yeast, Rhodotorula glutinis. J. Clin. Biochem. Nutr. 30: 1-10. https://doi.org/10.3164/jcbn.30.1
  49. Wang SL, Sha X, Wang HX, 2016. Improving yield of beta carotene in red yeast by using fermentation promoter. Food Nut. China. 22: 58-60.
  50. Marova I, Carnecka M, Halienova A, Certik M, Dvorakova T, Haronikova A. 2012. Use of several waste substrates for carotenoid-rich yeast biomass production. J. Environ. Manage 95: S338-S342. https://doi.org/10.1016/j.jenvman.2011.06.018
  51. Husseiny SM, Abdelhafez AA, Ali AA, Sand HM, Husseiny SM, Abdelhafez AA, et al. 2017. Optimization of ${\beta}$-carotene production from Rhodotorula glutinis ATCC 4054 growing on agro-industrial substrate using plackett-burman design. P. Natl. A. Sci. India 3: 1-10.
  52. Taskin M, Sisman T, Erdal S, Kurbanoglu EB. 2011. Use of waste chicken feathers as peptone for production of carotenoids in submerged culture of Rhodotorula glutinis MT-5. Eur. Food. Res. Technol. 233: 657-665. https://doi.org/10.1007/s00217-011-1561-2
  53. Aksu Z, Eren AT. 2005. Carotenoids production by the yeast Rhodotorula mucilaginosa: use of agricultural wastes as a carbon source. Process. Biochem. 40: 2985-2991. https://doi.org/10.1016/j.procbio.2005.01.011
  54. Petrik S, Marova I, Haronikova A, Kostovova I, Breierova E. 2013. Production of biomass, carotenoid and other lipid metabolites by several red yeast strains cultivated on waste glycerol from biofuel production - a comparative screening study. Ann. Microbiol. 63: 1537-1551. https://doi.org/10.1007/s13213-013-0617-x
  55. Rodriguez-Saiz MFJLDL, Barredo JL. 2010. Xanthophyllomyces dendrorhous for the industrial production of astaxanthin. Appl. Microbiol. Biotechnol. 88: 645-658. https://doi.org/10.1007/s00253-010-2814-x
  56. Zhu Z, Zhang S, Liu H, Shen H, Lin X, Yang F, et al. 2012. A multi-omic map of the lipid-producing yeast Rhodosporidium toruloides. Nat. Commun. 3: 1112. https://doi.org/10.1038/ncomms2112
  57. Sambles C, Middelhaufe S, Soanes D, Kolak D, Lux T, Moore K, et al. 2017. Genome sequence of the oleaginous yeast Rhodotorula toruloides strain CGMCC 2.1609. Genom. Data 13: 1-2. https://doi.org/10.1016/j.gdata.2017.05.009
  58. Paul D, Magbanua Z, Arick M, French T, Bridges SM, Burgess SC, et al. 2014. Genome Sequence of the Oleaginous Yeast Rhodotorula glutinis ATCC 204091. Genome Announc. 2: 1-2.
  59. Firrincieli A, Otillar R, Salamov A, Schmutz J, Khan Z, Redman RS, et al. 2015. Genome sequence of the plant growth promoting endophytic yeast Rhodotorula graminis WP1. Front. Microbiol. 6: 978. https://doi.org/10.3389/fmicb.2015.00978
  60. Gan HM, Thomas BN, Cavanaugh NT, Morales GH, Mayers A N, S avka M A, et al. 2017. Whole genome sequencing of Rhodotorula mucilaginosa isolated from the chewing stick (Distemonanthus benthamianus): insights into Rhodotorula phylogeny, mitogenome dynamics and carotenoid biosynthesis. PeerJ. 5: 1-18.
  61. Deligios M, Fraumene C, Abbondio M. 2015. Draft genome sequence of Rhodotorula mucilaginosa, an emergent opportunistic pathogen. Genome Announc. 3: 1-2.
  62. Tkavc R, Matrosova VY, Grichenko OE. 2017. Prospects for fungal bioremediation of acidic radioactive waste sites characterization and genome sequence of Rhodotorula taiwanensis MD1149. Front. Microbiol. 8: 2528. https://doi.org/10.3389/fmicb.2017.02528
  63. Miccoli C, Palmieri D, Curtis FD, Lima G, Ianiri G, Castoria R. 2018. Complete genome sequence of the biocontrol agent yeast Rhodotorula kratochvilovae Strain LS11. Genome Announc. 6: 1-2.
  64. Kim S, Kim J, Jung W, Kim J, Jung J. 2006. Over-production of beta-carotene from metabolically engineered Escherichia coli. Biotechnol. Lett. 28: 897-904. https://doi.org/10.1007/s10529-006-9023-9
  65. Xu P, Bura R, Doty SL. 2015. Cloning and characterization of the astaxanthin biosynthetic gene encoding phytoene desaturase of Xanthophyllomyces dendrorhous. Biotechnol. Bioeng. 63: 750-755. https://doi.org/10.1002/(SICI)1097-0290(19990620)63:6<750::AID-BIT13>3.0.CO;2-7
  66. Misawa N, Yamano S, Ikenaga H. 1991. Production of betacarotene in Zymomonas mobilis and Agrobacterium tumefaciens by introduction of the biosynthesis genes from Erwinia uredovora. Appl. Environ. Microbiol. 57: 1847-1849. https://doi.org/10.1128/AEM.57.6.1847-1849.1991
  67. Kim JH, Kim SW, Nguyen DQA, Li H, Kim SB, Seo YG, et al. 2009. Production of ${\beta}$-carotene by recombinant Escherichia coli with engineered whole mevalonate pathway in batch and fed-batch cultures. Biotechnol. Bioprocess. Eng. 14: 559-564. https://doi.org/10.1007/s12257-008-0230-1
  68. Yoon SH, Park HM, Kim JE, Lee SH, Choi MS, Kim JY, et al. 2010. Increased ${\beta}$-carotene production in recombinant Escherichia coli harboring an engineered isoprenoid precursor pathway with mevalonate addition. Biotechnol. Progr. 23: 599-605. https://doi.org/10.1021/bp070012p
  69. Yoon SH, Lee SH, D as A , Ryu HK, Jang H J, K im JY, et al. 2009. Combinatorial expression of bacterial whole mevalonate pathway for the production of beta-carotene in E. coli. J. Biotechnol. 140: 218-226. https://doi.org/10.1016/j.jbiotec.2009.01.008
  70. Yang J, Guo L. 2014. Biosynthesis of ${\beta}$-carotene in engineered E. coli using the MEP and MVA pathways. Microb. Cell Fact. 13: 160. https://doi.org/10.1186/s12934-014-0160-x
  71. Zhao J, Li Q, Sun T, Zhu XN, Xu HT, Tang JL, et al. 2013. Engineering central metabolic modules of Escherichia coli for improving ${\beta}$-carotene production. Metab. Eng. 17: 42-50. https://doi.org/10.1016/j.ymben.2013.02.002
  72. Stephanopoulos G. 1999. Metabolic fluxes and metabolic engineering. Metab. Eng. 1: 1-11. https://doi.org/10.1006/mben.1998.0101
  73. Misawa N, Shimada H. 1998. Metabolic engineering for the production of carotenoids in non-carotenogenic bacteria and yeasts. J. Biotechnol. 59: 169-181. https://doi.org/10.1016/S0168-1656(97)00154-5
  74. Verwaal R, Wang J, Meijnen JP, Visser H, Sandmann G, Berg JAVD, et al. 2007. High-level production of beta-carotene in Saccharomyces cerevisiae by successive transformation with carotenogenic genes from Xanthophyllomyces dendrorhous. Appl. Environ. Microb. 73: 4342-4350. https://doi.org/10.1128/AEM.02759-06
  75. Miura Y, Kondo K, Saito T, Shimada H, Fraser PD, Misawa N. 1998. Production of the carotenoids lycopene, beta-carotene, and astaxanthin in the food yeast Candida utilis. Appl. Environ. Microbiol. 64: 1226-1229. https://doi.org/10.1128/AEM.64.4.1226-1229.1998
  76. Shimada H, Kondo K, Fraser PD, Miura Y, Saito T, Misawa N. 1998. Increased carotenoid production by the food yeast Candida utilis through metabolic engineering of the isoprenoid pathway. Appl. Environ. Microbiol. 64: 2676-2680. https://doi.org/10.1128/AEM.64.7.2676-2680.1998
  77. Araya-Garay JM, Feijoo-Siota L, Rosa-Dos-Santos F, Veiga-Crespo P, Villa TG. 2012. Construction of new Pichia pastoris X-33 strains for production of lycopene and ${\beta}$-carotene. Appl. Microbiol. Biotechnol. 93: 2483-2492. https://doi.org/10.1007/s00253-011-3764-7
  78. Abbott EP, Ianiri G, Castoria R, Idnurm A. 2013. Overcoming recalcitrant transformation and gene manipulation in Pucciniomycotina yeasts. Appl. Microbiol. Biotechnol. 97: 283-295. https://doi.org/10.1007/s00253-012-4561-7
  79. Liu Y, Koh CM, Sun L, Hlaing MM, Du M, Peng N, et al. 2013. Characterization of glyceraldehyde-3-phosphate dehydrogenase gene RtGPD1 and development of genetic transformation method by dominant selection in oleaginous yeast Rhodosporidium toruloides. Appl. Microbiol. Biotechnol. 97: 719-729. https://doi.org/10.1007/s00253-012-4223-9
  80. Pi HW, Anandharaj M, Kao YY, L in Y J, Chang J J, L in WH. 2018. Engineering the oleaginous red yeast Rhodotorula glutinis for simultaneous ${\beta}$-carotene and cellulase production. Sci. Rep. 8: 10850. https://doi.org/10.1038/s41598-018-29194-z

Cited by

  1. Natural Pigments of Microbial Origin vol.4, 2019, https://doi.org/10.3389/fsufs.2020.590439
  2. Genomics and lipidomics analysis of the biotechnologically important oleaginous red yeast Rhodotorula glutinis ZHK provides new insights into its lipid and carotenoid metabolism vol.21, pp.1, 2019, https://doi.org/10.1186/s12864-020-07244-z
  3. Evaluation of olive mill waste as substrate for carotenoid production by Rhodotorula mucilaginosa vol.7, 2020, https://doi.org/10.1186/s40643-020-00341-7
  4. Rhodotorula toruloides: an ideal microbial cell factory to produce oleochemicals, carotenoids, and other products vol.38, pp.1, 2019, https://doi.org/10.1007/s11274-021-03201-4