DOI QR코드

DOI QR Code

MEASURING TIMING PROPERTIES OF PSR B0540-69

  • Kim, Minjun (Department of Astronomy and Space Science, Chungbuk National University) ;
  • An, Hongjun (Department of Astronomy and Space Science, Chungbuk National University)
  • Received : 2019.07.10
  • Accepted : 2019.02.20
  • Published : 2019.04.30

Abstract

We report on the timing properties of the 'Crab twin' pulsar PSR B0540-69 measured with X-ray data taken with the Swift telescope over a period of 1100 days. The braking index of the pulsar was estimated to be $n=0.03{\pm}0.013$ in a previous study performed in 2015 with 500-day Swift data. This small value of n is unusual for pulsars, and a comparison with an old estimate of $n{\approx}2.1$ for the same target determined ~10 years earlier suggests a dramatic change in the braking index. To confirm the small value and therefore the large change of n, we used 1100-day Swift observations including the data used in the earlier determination of n = 0.03. In this study we find that the braking index of PSR B0540-69 is $n=0.163{\pm}0.001$, somewhat larger than 0.03. Since the measured value of n is still much smaller than 2.1, we can confirm the dramatic change in the braking index for this pulsar.

Keywords

CMHHBA_2019_v52n2_41_f0001.tif 이미지

Figure 1. Results of the direct frequency measurement using the $Z_{1}^{2}$-test. Top: Frequencies measured for each continuous data segment (black data points) and a linear fit (red solid line) to measure the frequency derivative. Bottom: Residuals left after subtracting the best-fit linear function.

CMHHBA_2019_v52n2_41_f0002.tif 이미지

Figure 2. 0.5-7-keV pulse profiles of PSR B0540-69. Top: The pulse profiles in the first 500 days of data produced with the known timing solution of Marshall et al. (2016). Bottom: The pulse profile made with the 1100-day data and the refined solution. Blue and black points are pulse profiles of the source before and after background subtraction, respectively. Best-fit sine functions are shown as smooth lines, the background profile is shown in red. We used 128 bins for the profiles and show two cycles for clarity. The profiles for the 500-day and 1100-day data appear similar, with pulsed fractions of 0.295(6) and 0.280(4).

CMHHBA_2019_v52n2_41_f0003.tif 이미지

Figure 3. Timing residuals after fitting out the cubic trend (timing solution) from the phase-shift measurements of the 1100-day data.

CMHHBA_2019_v52n2_41_f0004.tif 이미지

Figure 4. Timing residuals obtained in TEMPO2 after whitening the timing noise.

Table 1 List of pulsars with a measured braking index

CMHHBA_2019_v52n2_41_t0001.tif 이미지

Table 2 Several timing solutions for PSR B0540−69 obtained in previous works as well as this work

CMHHBA_2019_v52n2_41_t0002.tif 이미지

References

  1. An, H., Kaspi, V. M., Archibald, R., & Cumming, A. 2013, Spectral and Timing Properties of the Magnetar CXOU J164710.2-455216, ApJ, 763, 82 https://doi.org/10.1088/0004-637X/763/2/82
  2. An, H., Madsen, K. K., Reynolds, S. P., et al. 2014, High-Energy X-Ray Imaging of the Pulsar Wind Nebula MSH 15-52: Constraints on Particle Acceleration and Transport, ApJ, 793, 90 https://doi.org/10.1088/0004-637X/793/2/90
  3. Antonopoulou, D., Weltevrede, P., Espinoza, C. M., et al. 2015, The Unusual Glitch Recoveries of the High-Magnetic-Field Pulsar J1119-6127, MNRAS, 447, 3924 https://doi.org/10.1093/mnras/stu2710
  4. Antonopoulou, D., Espinoza, C. M., Kuiper, L., et al. 2018, Pulsar Spin-Down: the Glitch-Dominated Rotation of PSR J0537-6910, MNRAS, 473, 1644 https://doi.org/10.1093/mnras/stx2429
  5. Archibald, R. F., Kaspi, V. M., Beardmore, A. P., et al. 2015, On the Braking Index of the Unusual High-B Rotation-Powered Pulsar PSR J1846-0258, ApJ, 810, 67 https://doi.org/10.1088/0004-637X/810/1/67
  6. Archibald, R. F., Gotthelf, E. V., Ferdman, R. D., et al. 2016, A High Braking Index for a Pulsar, ApJ, 819, L16 https://doi.org/10.3847/2041-8205/819/1/L16
  7. Blandford, R. D., & Romani, R. W. 1988, On the Interpretation of Pulsar Braking Indices, MNRAS, 234, 57 https://doi.org/10.1093/mnras/234.1.57P
  8. Buccheri, R., Bennett, K., Bignami, G, F., et al. 1983, Search for Pulsed Gamma-Ray Emission From Radio Pulsars in the COS-B Data, A&A, 128, 245
  9. Campana, R., Mineo, T., de Rosa, A., et al. 2008, X-Ray Observations of the Large Magellanic Cloud Pulsar PSR B0540-69 and Its Pulsar Wind Nebula, MNRAS, 389, 691 https://doi.org/10.1111/j.1365-2966.2008.13619.x
  10. Clark, C. J., Pletsch, H. J., Wu, J., et al. 2016, The Braking Index of a Radio-Quiet Gamma-Ray Pulsar, ApJL, 832, L15 https://doi.org/10.3847/2041-8205/832/1/L15
  11. Cusumano, G., Massaro, E., & Mineo, T. 2003, Timing Noise, Glitches and the Braking Index of PSR B0540-69, A&A, 402, 647 https://doi.org/10.1051/0004-6361:20030270
  12. de Araujo, J. C. N., Coelho, J. G., & Costa, C. A. 2016. GravitationalWaves from Pulsars with Measured Braking Index, Eur. Phys. J. C, 76, 481 https://doi.org/10.1140/epjc/s10052-016-4327-y
  13. de Jager, O. C., Raubenheimer, B. C., & Swanepoel, J. W. H. 1989, A Powerful Test for Weak Periodic Signals with Unknown Light Curve Shape in Sparse Data, A&A, 221, 180
  14. Dib, R., & Kaspi, V. M., 2014, 16 yr of RXTE Monitoring of Five Anomalous X-Ray Pulsars, ApJ, 784, 37 https://doi.org/10.1088/0004-637X/784/1/37
  15. Espinoza, C. M., Lyne, A. G., Kramer, M., et al. 2011, The Braking Index of PSR J1734-3333 and the Magnetar Population, ApJ, 741, 1 https://doi.org/10.1088/0004-637X/741/1/1
  16. Espinoza, C. M., Lyne, A. G., & Stappers, B. W., 2017, New Long-Term Braking Index Measurements for Glitching Pulsars Using a Glitch-Template Method, MNRAS, 466, 147 https://doi.org/10.1093/mnras/stw3081
  17. Ferdman, R. D., Archibald, R. F., & Kaspi, V. M. 2015, Long-Term Timing and Emission Behavior of the Young Crab-Like Pulsar PSR B0540-69, ApJ, 812, 95 https://doi.org/10.1088/0004-637X/812/2/95
  18. Gehrels, N., Chincarini, G., Giommi, P., et al. 2004, The Swift Gamma-Ray Burst Mission, ApJ, 611, 1005 https://doi.org/10.1086/422091
  19. Gourgouliatos, K. N., & Cumming, A. 2015, Hall Drift and the Braking Indices of Young Pulsars, MNRAS, 446, 1121 https://doi.org/10.1093/mnras/stu2140
  20. Hobbs, G. B., Edwards, R. T., & Manchester, R. N. 2006, TEMPO2, A New Pulsar-Timing Package - I. An Overview, MNRAS, 369, 655 https://doi.org/10.1111/j.1365-2966.2006.10302.x
  21. Kaaret, P., Marshall, H. L., Aldcroft, T. L., et al. 2001, Chandra Observations of the Young Pulsar PSR B0540-69, ApJ, 546, 1159 https://doi.org/10.1086/318287
  22. Kou, F. F., & Tong, H. 2015, Rotational Evolution of the Crab Pulsar in the Wind Braking Model, MNRAS, 450, 1990 https://doi.org/10.1093/mnras/stv734
  23. Livingstone, M. A., Kaspi, V. M., & Gavriil, F. P. 2005, Long-Term Phase-Coherent X-Ray Timing of PSR B0540-69, ApJ, 633, 1095 https://doi.org/10.1086/491643
  24. Livingstone, M. A., Ng, C. Y., Kaspi, V. M., et al. 2011, Post-Outburst Observations of the Magnetically Active Pulsar J1846-0258. A New Braking Index, Increased Timing Noise, and Radiative Recovery, ApJ, 730, 66 https://doi.org/10.1088/0004-637X/730/2/66
  25. Livingstone, M. A., & Kaspi, V. M. 2011, Long-Term X-Ray Monitoring of the Young Pulsar PSR B1509-58, ApJ, 742, 31 https://doi.org/10.1088/0004-637X/742/1/31
  26. Lyne, A. G., Jordan, C. A., Graham-Smith, F., et al., 2015, 45 Years of Rotation of the Crab Pulsar, MNRAS, 446, 857 https://doi.org/10.1093/mnras/stu2118
  27. Madsen, K. K., Reynolds, S., Harrison, F., et al. 2015, Broadband X-Ray Imaging and Spectroscopy of the Crab Nebula and Pulsar with NuSTAR, ApJ, 801, 66 https://doi.org/10.1088/0004-637X/801/1/66
  28. Manchester, R. N., Durdin, J. M., & Newton, L. M. 1985, A Second Measurement of a Pulsar Braking Index, Nature, 313, 374 https://doi.org/10.1038/313374a0
  29. Marshall, F. E., Guillemot, L., Harding, A. K., et al. 2015, Discovery of a Spin-Down State Change in the LMC Pulsar B0540-69, ApJ, 807, L27 https://doi.org/10.1088/2041-8205/807/2/L27
  30. Marshall, F. E., Guillemot, L., Harding, A. K., et al. 2016, A New, Low Braking Index for the LMC Pulsar B0540-69, ApJ, 827, L39 https://doi.org/10.3847/2041-8205/827/2/L39
  31. Marshall, F. E., Guillemot, L., Harding, A. K., et al. 2018, On-Going Monitoring of the LMC Pulsar B0540-69, American Astronomical Society Meeting Abstracts #231, 231, #243.05
  32. Menou, K., Perna, R., & Hernquist, L. 2001, Stability and Evolution of Supernova Fallback Disks, ApJ, 559, 1032 https://doi.org/10.1086/322418
  33. Mignani, R. P., Sartori, A., de Luca, A., et al. 2010, HST/WFPC2 Observations of the LMC Pulsar PSRB0540-69, A&A, 515, A110 https://doi.org/10.1051/0004-6361/200913870
  34. Mignani, R. P., De Luca, A., Hummel, W., et al. 2012, The Near-Infrared Detection of PSR B0540-69 and Its Nebula, A&A, 544, A100 https://doi.org/10.1051/0004-6361/201219177
  35. Mori, K., Burrows, D. N., Hester, J. J., et al. 2004, Spatial Variation of the X-Ray Spectrum of the Crab Nebula, ApJ, 609, 186 https://doi.org/10.1086/421011
  36. Ostriker, J. P., & Gunn, J. E. 1969, On the Nature of Pulsars. I. Theory, ApJ, 157, 1395 https://doi.org/10.1086/150160
  37. Roy, J., Gupta, Y., & Lewandowski, W. 2012, Observations of Four Glitches in the Young Pulsar J1833-1034 and Study of Its Glitch Activity, MNRAS, 424, 2213 https://doi.org/10.1111/j.1365-2966.2012.21380.x
  38. Sedrakian, A., & Cordes, J. M. 1998, Spin Evolution of Pulsars with Weakly Coupled Superfluid Interiors, ApJ, 502, 378 https://doi.org/10.1086/305896
  39. Seward, F. D., Harnden. Jr, F. R., & Helfand, D. J. 1984, Discovery of a 50 Millisecond Pulsar in the Large Magellanic Cloud, ApJ, 287, L19 https://doi.org/10.1086/184388
  40. Zhang, W., Marshall, F. E., Gotthelf, E. V., et al. 2001, A Phase-Connected Braking Index Measurement for the Large Magellanic Cloud Pulsar PSR B0540-69, ApJ, 554, L177 https://doi.org/10.1086/321703