DOI QR코드

DOI QR Code

Expression and Purification of Three Lipases (LipAD1, LipAD2, and LipAD3) and a Lipase Chaperone (LipBD) from Acinetobacter schindleri DYL129

Acinetobacter schindleri DYL129 유래의 3개 lipases와 chaperone의 발현과 정제

  • Kim, Sun-Hee (Department of Biotechnology, College of Natural Resources and Life Science, Dong-A University) ;
  • Lee, Yong-Suk (Department of Biotechnology, College of Natural Resources and Life Science, Dong-A University) ;
  • Jeong, Hae-Rin (Department of Biotechnology, College of Natural Resources and Life Science, Dong-A University) ;
  • Pyeon, Hyo-Min (Department of Biotechnology, College of Natural Resources and Life Science, Dong-A University) ;
  • You, Ju-Soon (Department of Biotechnology, College of Natural Resources and Life Science, Dong-A University) ;
  • Choi, Yong-Lark (Department of Biotechnology, College of Natural Resources and Life Science, Dong-A University)
  • 김선희 (동아대학교 생명자원과학대학 생명공학과) ;
  • 이용석 (동아대학교 생명자원과학대학 생명공학과) ;
  • 정해린 (동아대학교 생명자원과학대학 생명공학과) ;
  • 편효민 (동아대학교 생명자원과학대학 생명공학과) ;
  • 유주순 (동아대학교 생명자원과학대학 생명공학과) ;
  • 최용락 (동아대학교 생명자원과학대학 생명공학과)
  • Received : 2019.02.23
  • Accepted : 2019.04.25
  • Published : 2019.04.30

Abstract

Previously, three kinds of lipases, lipAD1, lipAD2, and lipAD3, and lipase chaperone, lipBD, of Acinetobacter schindleri DYL129 isolated from soil sample were reported. In this report, three lipase and lipase chaperone were cloned into the pET32a(+) or pGEX-6P-1 vectors for protein expression in Escherichia coli, and named as pETLAD1, pETLAD2, pETLAD3 and pETLBD or pGEXLAD1, pGEXLAD 2, pGEXLAD3 and pGEXLBD, respectively. Protein expression rate was higher in pET system than in pGEX system. Although LipAD1 and LipAD2 were produced as inclusion bodies, their expression levels were high. So LipAD1 and LipAD2 could be solubilized in 8 M urea buffer and purified. LipAD3 and LipBD were overexpressed in soluble form and purified. Those proteins were purified by His-tag affinity chromatography connected in AKTA prime system. The activities of the purified lipases were demonstrated with 1% tributyrin agar plate. After purification, molecular mass was determined with sodium dodecyl sulfate-polyacrylamide gel electrophoresis. LipAD1 showed high activity toward ${\rho}$-nitrophenyl acetate and ${\rho}$-nitrophenyl butyrate, LipAD2 showed high activity toward ${\rho}$-nitrophenyl acetate and ${\rho}$-nitrophenyl myristate, and LipAD3 showed high activity toward ${\rho}$-nitrophenyl acetate, ${\rho}$-nitrophenyl butyrate, and ${\rho}$-nitrophenyl miristate, respectively. Three lipases, LipAD1, LipAD2, and LipAD3, showed optimal reaction at $50^{\circ}C$ using ${\rho}$-nitrophenyl butyrate, as substrate.

기존 연구를 통하여 토양에서 분리한 Acinetobacter schindleri DYL129로부터 3개의 lipase 유전자(lipAD1, lipAD2와 lipAD3)들과 1개의 chaperone (lipBD) 유전자를 보고하였다. 본 연구에서는 각 유전자들의 발현을 위해서 pET32a(+)와 pGEX-6P-1 벡터에 클로닝하여 각각을 pETLAD1-3와 pETLBD 또는 pGEXLAD1-3와 pGEXLB로 명명하였으며, 단백질의 발현량은 pET 시스템을 사용할 때 1.5 배 정도 향상됨을 확인하였다. LipAD1과 LipAD2는 inclusion body 형태로 발현이 되었으며, LipAD3과 LipBD는 soluble type으로도 발현되었다. Inclusion body 형태의 LipAD1과 LipAD2는 고농도의 우레아를 처리하여 refolding 시켰다. LipAD1은 C4와 C2를, LipAD2는 C2와 C14를 그리고 lipAD3은 C2, C4와 C14를 기질로 잘 이용하는 것을 확인하였다. 그리고 모든 효소들은 $50^{\circ}C$에서 최적 활성을 나타내었다.

Keywords

SMGHBM_2019_v29n4_492_f0003.png 이미지

Fig. 3. The three lipases were purified by affinity chromatography. A) SDS-PAGE analysis of the samples of purified lipases and lipase chaperone. Samples were resolved on 12% polyacrylamide gel and stained with Coomassie blue R-250. Lane 1: molecular size markers (100, 70, 50, 40, 30, 20, 15 kDa); lane 2: N His- LipBD; lane 3: P His- LipBD, 57 kDa; lane 4: native His-LipAD1; lane 5: P His-LipAD1, 56 kDa; lane 6: N His-LipAD2; lane 7: P His-LipAD2, 56 kDa; lane 8: N His-LipAD3; lane 9: P His-LipAD3, 34 kDa (N: native protein, P: purified protein). B) Activity test for the purified and dialyzed lipases. The enzyme activities of fractions 6-9 were tested with 1% tributyrin agar plate containing 0.01% phenol red. The yellow color indicates the released fatty acids from tributyrin.

SMGHBM_2019_v29n4_492_f0004.png 이미지

Fig. 4. Substrate specificity of His-LipAD1, His-LipAD2, and His-LipAD3. Acyl chain length specificity of purified lipases was determined from their activities toward various esters of ρ-NP (0.5 mM). Percentages shown are relative to maximum activity.

SMGHBM_2019_v29n4_492_f0005.png 이미지

Fig. 5. Effect of temperature on the activity of lipases. The enzyme was incubated in 20 mM Tris-HCl buffer (pH 7.4) for 30 min at various temperatures. The activity was determined using ρ-NP butyrate as substrate. The value obtained for His-LipAD2 at 50℃ was considered as 100%.

SMGHBM_2019_v29n4_492_f0006.png 이미지

Fig. 1. Overexpression of LipAD1 and LipAD2. A) M, size marker (100, 70, 50, 40, 30, 20, 15 kDa); 1-4 insoluble proteins (1: NIP pET, 2: IP pET, 3: NIP His-LipAD1, 4: IP His-LipAD1); 5-8 soluble proteins (5: NI pET, 6: I pET, 7: NI His-LipAD1, 8: I LipAD2), B) M, size marker; 1-4 soluble proteins (1: NI pET, 2: I pET, 3: NI His-LipAD2, 4: I His-LipAD2); 5-8 insoluble proteins (5: NIP pET, 6: IP pET, 7: NIP His-LipAD2, 8: IP His-LipAD2). Arrow indicates expressed protein (about 56 kDa) NIP: uninduced protein pellet, IP: induced protein pellet, NI: uninduced protein, I: induced protein.

SMGHBM_2019_v29n4_492_f0007.png 이미지

Fig. 2. Expression of LipAD3 and LipBD. A) The soluble proteins were loaded onto a 12% polyacrylamide gel. M: size marker; 1: NI pET; 2: I pET; 3: NI His-LipAD3; 4, 5: I His-LipAD3; 6: NI LipBD; 7, 8: IP His- LipBD. B) Insoluble proteins. M: size marker; 1: NIP pET; 2: IP pET; 3: NIP His-LipAD3; 4, 5: IP His-LipAD3; 6: NIP His-LipBD; 7, 8: IP His- LipBD. Arrow indicates expressed proteins (about 36 and 57 kDa, respectively). NIP: uninduced protein pellet, IP: induced protein pellet, NI: uninduced protein, I: induced protein.

Table 1. PCR primers used for the expression of three lipases and the lipase chaperone

SMGHBM_2019_v29n4_492_t0001.png 이미지

Table 2. Purification of lipases from Acinetobacter schindleri DYL129

SMGHBM_2019_v29n4_492_t0002.png 이미지

References

  1. Aravindan, R., Anbumathi, P. and Viruthagiri, T. 2007. Lipase applications in food industry. Ind. J. Biotechnol. 6, 141-158.
  2. Cho, A. R., Yoo, S. K. and Kim, E. J. 2000. Cloning, sequencing and expression in Escherichia coli of a thermophilic lipase from Bacillus thermoleovorans ID-1. FEMS Microbiol. Lett. 186, 235-238. https://doi.org/10.1111/j.1574-6968.2000.tb09110.x
  3. Eddehech, A., Zied, Z., Aloui, F., Smichi, N., Noiriel, A., Abousalham, A. and Gargouri, Y. 2018. Production, purification and biochemical characterization of a thermoactive, alkaline lipase from a newly isolated Serratia sp. W3 tunisian strain. Int. J. Biol. Macromol. 123, 792-800. https://doi.org/10.1016/j.ijbiomac.2018.11.050
  4. Gavya, S. L., Arora, N. and Ghosh, S. S. 2018. Retention of functional characteristics of glutathione-S-transferase and lactate dehydrogenase-A in fusion protein. Prep. Biochem. Biotechnol. 48, 128-135. https://doi.org/10.1080/10826068.2017.1405022
  5. Gupta, K. K., Jagtap, S., Priya, R. and Ramadas, K. 2018. Purification, characterization of alkaline cold active lipase from Acinetobacter radioresistens PR8 and development of a new zymography method for lipase detection. Pretein Pept. Lett. 25, 897-907. https://doi.org/10.2174/0929866525666180905113206
  6. Jaeger, K. E. and Eggert, T. 2002. Lipase for biotechnology. Curr. Opin. Biotechnol. 13, 390-397. https://doi.org/10.1016/S0958-1669(02)00341-5
  7. Jawed, M., Pi, J., Xu, L., Zhang, H., Hakeem, A. and Yan, Y. 2016. Enhanced $H_2$ production and redirected metabolic flux via overexpression of fhlA and pncB in Klebsiella HQ-3 strain. Appl. Biochem. Biotechnol. 178, 1113-1128. https://doi.org/10.1007/s12010-015-1932-4
  8. Kaplan, N. and Rosenberg, E. 1982. Exopolysaccharide distribution and bioemulsifier production by Acinetobacter calcoaceticus BD4 and BD413. Appl. Environ. Microbiol. 44, 1335-1341. https://doi.org/10.1128/AEM.44.6.1335-1341.1982
  9. Kim, H. K., Park, S. Y., Lee, J. K. and Oh, T. K. 1998. Gene cloning and characterization of thermostable lipase from Bacillus stearothermophilus L1. Biosci. Biotechnol. Biochem. 62, 66-71. https://doi.org/10.1271/bbb.62.66
  10. Kim, S. H., Park, I. Y., Lee, S. C., Lee, Y. S., Ahn, S. C., Kim, C. M. and Choi, Y. L. 2008. Discovery of three novel lipase (LipA1, LipA2, LipA3) and lipase specific chaperone (LipB) gene present in Acinetbacter sp. DYL129. Appl. Microbiol. Biotechnol. 77, 1041-1051. https://doi.org/10.1007/s00253-007-1242-z
  11. Laemmli, U. K. 1970. Most commonly used discontinuous buffer system for SDS electrophoresis. Nature 227, 680-686. https://doi.org/10.1038/227680a0
  12. Lee, Y. S. 2016. Isolation and characterization of a novel cold-adapted esterase, MtEst45, from Microbulbifer thermotolerans DAU221. Front. Microbiol. 7, 218.
  13. Lee, Y. S., Park, I. H., Yoo, J. S., Chung, S. Y., Lee, Y. C., Cho, Y. S., Ahn, S. C., Kim, C. M. and Choi, Y. L. 2007. Cloning, purification, and characterization of chitinase form Bacillus sp. DAU101. Bioresour. Technol. 98, 2734-2741. https://doi.org/10.1016/j.biortech.2006.09.048
  14. Lee, Y. S., Yoo, J. S., Chung, S. Y., Lee, Y. C., Cho, Y. S. and Choi, Y. L. 2006. Cloning, purification, and characterization of chitosanase from Bacillus sp. DAU101. Appl. Microbiol. Biotechnol. 73, 113-121. https://doi.org/10.1007/s00253-006-0444-0
  15. Leow, T. C., Rahman, Z. A., Basri, M. and Salleh, A. B. 2004. High level expression of thermostable lipase from Geobacillus sp. strain T1. Biosci. Biotechnol. Biochem. 68, 96-103. https://doi.org/10.1271/bbb.68.96
  16. Li, H. and Xia, Y. 2018. Recombinant production of the insecticidal scorpion toxin $Bj{\alpha}IT$ in Escherichia coli. Protein Expr. Purif. 142, 62-67. https://doi.org/10.1016/j.pep.2017.10.003
  17. Lin, W. J., Huang, S. and Chou, C. P. High-level extracellular production of penicillin acylase by genetic engineering of Escherichia coli. J. Chem. Tech. Biotechnol. 76, 1030-1037.
  18. Lou, D., Tan, J., Zhu, L., Ji, S., Tang, S., Yao, K., Han, J. and Wang, B. 2018. Engineering Clostridium absonum $7{\alpha}$-hydroxysteroid dehydrogenase for enhancing thermostability based on flexible site and ${\Delta}{\Delta}G$ prediction. Protein Pept. Lett. 25, 230-235. https://doi.org/10.2174/0929866524666171113113100
  19. Luo, H., He, C. and Han, L. 2018. Heterologous expression of ZjOMT from Zoysia joponica in Escherichia coli confers aluminum resistance through melatonin production. PLoS One 13, e0196952. https://doi.org/10.1371/journal.pone.0196952
  20. Musa, H., Hafiz Kasim, F., Nagoor Gunny, A. A., Gopinath, S. C. B. and Azmier Ahmad, M. 2019. Enhanced halophilic lipase secretion by Marinobacter litoralis SW-45 and its potential fatty acid esters release. J. Basic Microbiol. 59, 87-100. https://doi.org/10.1002/jobm.201800382
  21. Navon-Venezia, S., Zosim, Z., Gottlieb, A., Legmann, R., Carmeli, S., Ron, E. Z. and Rosenberg, E. 1995. A new bioemulsifier from Acinetobacter radioresistens. Appl. Environ. Microbiol. 61, 3240-3244. https://doi.org/10.1128/AEM.61.9.3240-3244.1995
  22. Reis, P., Holmberg, K., Watzke, H., Leser, M. E. and Miller, R. 2009. Lipases at interfaces: a review. Adv. Colloid Interface Sci. 147-148, 237-250. https://doi.org/10.1016/j.cis.2008.06.001
  23. Rosano, G. R. and Ceccarelli, E. A. 2014. Recombinant protein expression in Escherichia coli: advances and challenges. Front. Microbiol. 5, 172. https://doi.org/10.3389/fmicb.2014.00172
  24. Schmidt-Dannert, C., Rua, M. L., Atomi, H. and Schmid, R. D. 1996. Thermoalkalophilic lipase of Bacillus thermocatenulantus. I. Molecular cloning, nucleotide sequence, purification and some properties. Biochim. Biophys. Acta 1301, 105-114. https://doi.org/10.1016/0005-2760(96)00027-6
  25. Singh, A., Upadhyay, V., Upadhyay, A. K., Singh, S. M. and Panda, A. K. 2015. Protein recovery from inclusion bodies of Escherichia coli using mild solubilization process. Microb. Cell Fact. 14, 41. https://doi.org/10.1186/s12934-015-0222-8
  26. Singh, P. K., Tang, M., Kumar, S. and Shrivastava, A. K. 2018. Decoding the role of hypothetical protein All32255 of anabaena PCC7120 in heavy metal stress management in Escherichia coli. Arch. Microbiol. 200, 463-471. https://doi.org/10.1007/s00203-017-1462-2
  27. Singh, R., Kumar, M., Mittal, A. and Mehta, P. K. 2016. Microbial enzymes: industrial progress in 21st century. 3 Biotech. 6, 174
  28. Snellman, E. A., Sullivan, E. R. and Cowell, R. R. 2002. Purification and properties of the extracellular lipase, LipA, of Acinetobacter sp. RAG-1. Eur. J. Biochem. 269, 5771-5779. https://doi.org/10.1046/j.1432-1033.2002.03235.x
  29. Tripathi, P. C., Gajbhiye, S. R. and Agrawal, G. N. 2014. Clinical and antimicrobial profile of Acinetobacter spp.: an emerging nosocomial superbug. And. Biomed. Res. 3, 13.
  30. van Tilbeurgh, H., Egloff, M. P., Martinez, C., Rugani, N., Verger, R. and Cambillau, C. 1993. Interfacial activation of the lipase procolipase complex by mixed micelles revealed by X-ray crystallography. Nature 362, 814-820. https://doi.org/10.1038/362814a0
  31. Wang, H., Zhong, X., Li, J., Zhu, M., Wnag, L., Ji, X., Fan, J. and Wang, L. 2018. Cloning and expression of H. influenzae 49247 IgA protease in E. coli. Mol. Biotechnol. 60, 134-140. https://doi.org/10.1007/s12033-017-0054-3
  32. Yoo, Y. H., Simkhada, J. R., Cho, S. S., Park, D. H., Kim, S. W., Seong, C. N. and Yoo, J. C. 2011. A novel alkaline lipase from Ralstonia with potential application in biodiesel production. Bioresour. Technol. 102, 6104-6111. https://doi.org/10.1016/j.biortech.2011.02.046