Fig. 3. The three lipases were purified by affinity chromatography. A) SDS-PAGE analysis of the samples of purified lipases and lipase chaperone. Samples were resolved on 12% polyacrylamide gel and stained with Coomassie blue R-250. Lane 1: molecular size markers (100, 70, 50, 40, 30, 20, 15 kDa); lane 2: N His- LipBD; lane 3: P His- LipBD, 57 kDa; lane 4: native His-LipAD1; lane 5: P His-LipAD1, 56 kDa; lane 6: N His-LipAD2; lane 7: P His-LipAD2, 56 kDa; lane 8: N His-LipAD3; lane 9: P His-LipAD3, 34 kDa (N: native protein, P: purified protein). B) Activity test for the purified and dialyzed lipases. The enzyme activities of fractions 6-9 were tested with 1% tributyrin agar plate containing 0.01% phenol red. The yellow color indicates the released fatty acids from tributyrin.
Fig. 4. Substrate specificity of His-LipAD1, His-LipAD2, and His-LipAD3. Acyl chain length specificity of purified lipases was determined from their activities toward various esters of ρ-NP (0.5 mM). Percentages shown are relative to maximum activity.
Fig. 5. Effect of temperature on the activity of lipases. The enzyme was incubated in 20 mM Tris-HCl buffer (pH 7.4) for 30 min at various temperatures. The activity was determined using ρ-NP butyrate as substrate. The value obtained for His-LipAD2 at 50℃ was considered as 100%.
Fig. 1. Overexpression of LipAD1 and LipAD2. A) M, size marker (100, 70, 50, 40, 30, 20, 15 kDa); 1-4 insoluble proteins (1: NIP pET, 2: IP pET, 3: NIP His-LipAD1, 4: IP His-LipAD1); 5-8 soluble proteins (5: NI pET, 6: I pET, 7: NI His-LipAD1, 8: I LipAD2), B) M, size marker; 1-4 soluble proteins (1: NI pET, 2: I pET, 3: NI His-LipAD2, 4: I His-LipAD2); 5-8 insoluble proteins (5: NIP pET, 6: IP pET, 7: NIP His-LipAD2, 8: IP His-LipAD2). Arrow indicates expressed protein (about 56 kDa) NIP: uninduced protein pellet, IP: induced protein pellet, NI: uninduced protein, I: induced protein.
Fig. 2. Expression of LipAD3 and LipBD. A) The soluble proteins were loaded onto a 12% polyacrylamide gel. M: size marker; 1: NI pET; 2: I pET; 3: NI His-LipAD3; 4, 5: I His-LipAD3; 6: NI LipBD; 7, 8: IP His- LipBD. B) Insoluble proteins. M: size marker; 1: NIP pET; 2: IP pET; 3: NIP His-LipAD3; 4, 5: IP His-LipAD3; 6: NIP His-LipBD; 7, 8: IP His- LipBD. Arrow indicates expressed proteins (about 36 and 57 kDa, respectively). NIP: uninduced protein pellet, IP: induced protein pellet, NI: uninduced protein, I: induced protein.
Table 1. PCR primers used for the expression of three lipases and the lipase chaperone
Table 2. Purification of lipases from Acinetobacter schindleri DYL129
References
- Aravindan, R., Anbumathi, P. and Viruthagiri, T. 2007. Lipase applications in food industry. Ind. J. Biotechnol. 6, 141-158.
- Cho, A. R., Yoo, S. K. and Kim, E. J. 2000. Cloning, sequencing and expression in Escherichia coli of a thermophilic lipase from Bacillus thermoleovorans ID-1. FEMS Microbiol. Lett. 186, 235-238. https://doi.org/10.1111/j.1574-6968.2000.tb09110.x
- Eddehech, A., Zied, Z., Aloui, F., Smichi, N., Noiriel, A., Abousalham, A. and Gargouri, Y. 2018. Production, purification and biochemical characterization of a thermoactive, alkaline lipase from a newly isolated Serratia sp. W3 tunisian strain. Int. J. Biol. Macromol. 123, 792-800. https://doi.org/10.1016/j.ijbiomac.2018.11.050
- Gavya, S. L., Arora, N. and Ghosh, S. S. 2018. Retention of functional characteristics of glutathione-S-transferase and lactate dehydrogenase-A in fusion protein. Prep. Biochem. Biotechnol. 48, 128-135. https://doi.org/10.1080/10826068.2017.1405022
- Gupta, K. K., Jagtap, S., Priya, R. and Ramadas, K. 2018. Purification, characterization of alkaline cold active lipase from Acinetobacter radioresistens PR8 and development of a new zymography method for lipase detection. Pretein Pept. Lett. 25, 897-907. https://doi.org/10.2174/0929866525666180905113206
- Jaeger, K. E. and Eggert, T. 2002. Lipase for biotechnology. Curr. Opin. Biotechnol. 13, 390-397. https://doi.org/10.1016/S0958-1669(02)00341-5
-
Jawed, M., Pi, J., Xu, L., Zhang, H., Hakeem, A. and Yan, Y. 2016. Enhanced
$H_2$ production and redirected metabolic flux via overexpression of fhlA and pncB in Klebsiella HQ-3 strain. Appl. Biochem. Biotechnol. 178, 1113-1128. https://doi.org/10.1007/s12010-015-1932-4 - Kaplan, N. and Rosenberg, E. 1982. Exopolysaccharide distribution and bioemulsifier production by Acinetobacter calcoaceticus BD4 and BD413. Appl. Environ. Microbiol. 44, 1335-1341. https://doi.org/10.1128/AEM.44.6.1335-1341.1982
- Kim, H. K., Park, S. Y., Lee, J. K. and Oh, T. K. 1998. Gene cloning and characterization of thermostable lipase from Bacillus stearothermophilus L1. Biosci. Biotechnol. Biochem. 62, 66-71. https://doi.org/10.1271/bbb.62.66
- Kim, S. H., Park, I. Y., Lee, S. C., Lee, Y. S., Ahn, S. C., Kim, C. M. and Choi, Y. L. 2008. Discovery of three novel lipase (LipA1, LipA2, LipA3) and lipase specific chaperone (LipB) gene present in Acinetbacter sp. DYL129. Appl. Microbiol. Biotechnol. 77, 1041-1051. https://doi.org/10.1007/s00253-007-1242-z
- Laemmli, U. K. 1970. Most commonly used discontinuous buffer system for SDS electrophoresis. Nature 227, 680-686. https://doi.org/10.1038/227680a0
- Lee, Y. S. 2016. Isolation and characterization of a novel cold-adapted esterase, MtEst45, from Microbulbifer thermotolerans DAU221. Front. Microbiol. 7, 218.
- Lee, Y. S., Park, I. H., Yoo, J. S., Chung, S. Y., Lee, Y. C., Cho, Y. S., Ahn, S. C., Kim, C. M. and Choi, Y. L. 2007. Cloning, purification, and characterization of chitinase form Bacillus sp. DAU101. Bioresour. Technol. 98, 2734-2741. https://doi.org/10.1016/j.biortech.2006.09.048
- Lee, Y. S., Yoo, J. S., Chung, S. Y., Lee, Y. C., Cho, Y. S. and Choi, Y. L. 2006. Cloning, purification, and characterization of chitosanase from Bacillus sp. DAU101. Appl. Microbiol. Biotechnol. 73, 113-121. https://doi.org/10.1007/s00253-006-0444-0
- Leow, T. C., Rahman, Z. A., Basri, M. and Salleh, A. B. 2004. High level expression of thermostable lipase from Geobacillus sp. strain T1. Biosci. Biotechnol. Biochem. 68, 96-103. https://doi.org/10.1271/bbb.68.96
-
Li, H. and Xia, Y. 2018. Recombinant production of the insecticidal scorpion toxin
$Bj{\alpha}IT$ in Escherichia coli. Protein Expr. Purif. 142, 62-67. https://doi.org/10.1016/j.pep.2017.10.003 - Lin, W. J., Huang, S. and Chou, C. P. High-level extracellular production of penicillin acylase by genetic engineering of Escherichia coli. J. Chem. Tech. Biotechnol. 76, 1030-1037.
-
Lou, D., Tan, J., Zhu, L., Ji, S., Tang, S., Yao, K., Han, J. and Wang, B. 2018. Engineering Clostridium absonum
$7{\alpha}$ -hydroxysteroid dehydrogenase for enhancing thermostability based on flexible site and${\Delta}{\Delta}G$ prediction. Protein Pept. Lett. 25, 230-235. https://doi.org/10.2174/0929866524666171113113100 - Luo, H., He, C. and Han, L. 2018. Heterologous expression of ZjOMT from Zoysia joponica in Escherichia coli confers aluminum resistance through melatonin production. PLoS One 13, e0196952. https://doi.org/10.1371/journal.pone.0196952
- Musa, H., Hafiz Kasim, F., Nagoor Gunny, A. A., Gopinath, S. C. B. and Azmier Ahmad, M. 2019. Enhanced halophilic lipase secretion by Marinobacter litoralis SW-45 and its potential fatty acid esters release. J. Basic Microbiol. 59, 87-100. https://doi.org/10.1002/jobm.201800382
- Navon-Venezia, S., Zosim, Z., Gottlieb, A., Legmann, R., Carmeli, S., Ron, E. Z. and Rosenberg, E. 1995. A new bioemulsifier from Acinetobacter radioresistens. Appl. Environ. Microbiol. 61, 3240-3244. https://doi.org/10.1128/AEM.61.9.3240-3244.1995
- Reis, P., Holmberg, K., Watzke, H., Leser, M. E. and Miller, R. 2009. Lipases at interfaces: a review. Adv. Colloid Interface Sci. 147-148, 237-250. https://doi.org/10.1016/j.cis.2008.06.001
- Rosano, G. R. and Ceccarelli, E. A. 2014. Recombinant protein expression in Escherichia coli: advances and challenges. Front. Microbiol. 5, 172. https://doi.org/10.3389/fmicb.2014.00172
- Schmidt-Dannert, C., Rua, M. L., Atomi, H. and Schmid, R. D. 1996. Thermoalkalophilic lipase of Bacillus thermocatenulantus. I. Molecular cloning, nucleotide sequence, purification and some properties. Biochim. Biophys. Acta 1301, 105-114. https://doi.org/10.1016/0005-2760(96)00027-6
- Singh, A., Upadhyay, V., Upadhyay, A. K., Singh, S. M. and Panda, A. K. 2015. Protein recovery from inclusion bodies of Escherichia coli using mild solubilization process. Microb. Cell Fact. 14, 41. https://doi.org/10.1186/s12934-015-0222-8
- Singh, P. K., Tang, M., Kumar, S. and Shrivastava, A. K. 2018. Decoding the role of hypothetical protein All32255 of anabaena PCC7120 in heavy metal stress management in Escherichia coli. Arch. Microbiol. 200, 463-471. https://doi.org/10.1007/s00203-017-1462-2
- Singh, R., Kumar, M., Mittal, A. and Mehta, P. K. 2016. Microbial enzymes: industrial progress in 21st century. 3 Biotech. 6, 174
- Snellman, E. A., Sullivan, E. R. and Cowell, R. R. 2002. Purification and properties of the extracellular lipase, LipA, of Acinetobacter sp. RAG-1. Eur. J. Biochem. 269, 5771-5779. https://doi.org/10.1046/j.1432-1033.2002.03235.x
- Tripathi, P. C., Gajbhiye, S. R. and Agrawal, G. N. 2014. Clinical and antimicrobial profile of Acinetobacter spp.: an emerging nosocomial superbug. And. Biomed. Res. 3, 13.
- van Tilbeurgh, H., Egloff, M. P., Martinez, C., Rugani, N., Verger, R. and Cambillau, C. 1993. Interfacial activation of the lipase procolipase complex by mixed micelles revealed by X-ray crystallography. Nature 362, 814-820. https://doi.org/10.1038/362814a0
- Wang, H., Zhong, X., Li, J., Zhu, M., Wnag, L., Ji, X., Fan, J. and Wang, L. 2018. Cloning and expression of H. influenzae 49247 IgA protease in E. coli. Mol. Biotechnol. 60, 134-140. https://doi.org/10.1007/s12033-017-0054-3
- Yoo, Y. H., Simkhada, J. R., Cho, S. S., Park, D. H., Kim, S. W., Seong, C. N. and Yoo, J. C. 2011. A novel alkaline lipase from Ralstonia with potential application in biodiesel production. Bioresour. Technol. 102, 6104-6111. https://doi.org/10.1016/j.biortech.2011.02.046