DOI QR코드

DOI QR Code

프로안토시아니딘의 항염증효과

Proanthocyanidins Suppresses Lipopolysaccharide-stimulated Inflammatory Responses via Heme Oxygenase-1 Induction in RAW264.7 Macrophages

  • 천혜진 (대구가톨릭대학교 의생명과학과) ;
  • 박선영 (대구가톨릭대학교 의생명과학과) ;
  • 장희지 (대구가톨릭대학교 의생명과학과) ;
  • 조다영 (대구가톨릭대학교 의생명과학과) ;
  • 정지원 (영천여자고등학교) ;
  • 박기민 (영천여자고등학교) ;
  • 정경미 (영천여자고등학교) ;
  • 김진경 (대구가톨릭대학교 의생명과학과)
  • Cheon, Hye-Jin (Department of Biomedical Science, Daegu Catholic University) ;
  • Park, Sun Young (Department of Biomedical Science, Daegu Catholic University) ;
  • Jang, Hee-Ji (Department of Biomedical Science, Daegu Catholic University) ;
  • Cho, Da-Young (Department of Biomedical Science, Daegu Catholic University) ;
  • Jung, Jiwon (Yeongcheon Girl's High School) ;
  • Park, Gimin (Yeongcheon Girl's High School) ;
  • Jeong, Kyeong Mi (Yeongcheon Girl's High School) ;
  • Kim, Jin-Kyung (Department of Biomedical Science, Daegu Catholic University)
  • 투고 : 2019.01.22
  • 심사 : 2019.02.20
  • 발행 : 2019.04.30

초록

프로안토시아니딘(proanthocyanidins)은 식물계에 가장 풍부한 폴리페놀성 화합물로 다양한 고등식물의 뿌리, 잎, 열매, 나무껍질 등에 널리 존재할 뿐만 아니라 이러한 원료로 만들어진 차, 와인, 맥주 등과 같은 식품에도 상당량 함유되어 있다. 세포 및 실험동물을 이용한 다수의 연구보고에 의하면 프로안토시아니딘은 항산화활성 및 면역조절활성, DNA 복구 및 항종양 작용과 같은 인체 건강에 유익한 무수한 효과를 가지고 있는 것으로 밝혀졌다. 면역 세포 중 대식세포(macrophage)는 염증반응을 매개하는 중요한 세포로 외부 병원체 제거에 중요한 역할을 수행하고 있다. 그러나 대식세포가 만성 염증을 유발하고 비만, 당뇨병, 대사 증후군 및 암과 같은 다양한 질병에 관여한다는 것 또한 널리 보고되어왔다. 본 연구에서는 마우스의 대식세포주인 RAW264.7세포를 이용하여 프로안토시아니딘의 항염증활성의 일단이 Heme oxygenase-1 (HO-1)의 유도에 의해서 매개됨을 밝혔다. RAW264.7세포에 프로안토시아니딘을 처리한 결과 세포독성을 보이지 않은 농도에서 HO-1의 발현을 증강시켰다. 또한 프로안토시아니딘의 처리는 HO-1의 발현을 조절하는 핵심 전사인자인 Nrf (nuclear factor-erythroid 2-related factor)-2의 핵으로의 이동을 유의적으로 증가시켰다. 프로안토시아닌딘의 처리는 LPS (lipopolysaccharide)에 의해 유도된 NO (nitric oxide)의 생성 및 iNOS (inducible NO synthase)의 발현과 염증성 사이토카인의 생성 및 발현도 유의적으로 억제 하였다. 이러한 결과는 프로안토시아니딘의 항염증제제로서의 개발 가능성을 제시하는 결과이다.

Proanthocyanidins are naturally occurring polyphenolic compounds abundant in many vegetables, plant skins (rind/bark), seeds, flowers, fruits, and nuts. Numerous in vitro and in vivo studies have demonstrated myriad effects potentially beneficial to human health, such as antioxidation, immunomodulation, DNA repair, and antitumor activity. Among immune cells, macrophages are crucial players in a variety of inflammatory responses to environmental conditions. However, it has been widely reported that macrophages cause chronic inflammation and are involved in a variety of diseases, such as obesity, diabetes, metabolic syndrome, and cancer. In this study, we report the suppressive effect of proanthocyanidins via the heme oxygenase-1 (HO-1)-related system, on the immune response of the LPS-stimulated mouse macrophage cell line RAW264.7. Increased HO-1 expression at mRNA and protein levels were found in proanthocyanidins-treated RAW264.7 cells. Further, proanthocyanidins enhanced nuclear factor-erythroid 2-related factor 2 translocation into the nucleus. RAW264.7 cells were treated with lipopolysaccharide (LPS) with or without proanthocyanidins, and inflammatory mediator expression levels were assessed. Proanthocyanidins treatment resulted in the attenuation of nitric oxide production and inducible nitric oxide synthase expression in LPS-stimulated RAW264.7 cells. In addition, mRNA and protein expression of proinflammatory cytokines, such as tumor necrosis factor-${\alpha}$ and interleukin-6, was inhibited by proanthocyanidins treatment in LPS-stimulated RAW264.7 cells. These findings support proanthocyanidins as a promising anti-inflammatory agent.

키워드

SMGHBM_2019_v29n4_484_f0001.png 이미지

Fig. 1. Effect of proanthocyanidins on cell viability in RAW264.7 macrophages.

SMGHBM_2019_v29n4_484_f0002.png 이미지

Fig. 2. Proanthocyanidins induced HO-1 protein expression.

SMGHBM_2019_v29n4_484_f0003.png 이미지

Fig. 3. Proanthocyanidins significantly reduced LPS-induced NO production and iNOS expression.

SMGHBM_2019_v29n4_484_f0004.png 이미지

Fig. 4. Proanthocyanidins treatment shown significant inhibitory effect on proinflammatory cytokines.

참고문헌

  1. Ammar el, S. M., Said, S. A., El-Damarawy, S. L. and Suddek, G. M. 2013. Cardioprotective effect of grape-seed proanthocyanidins on doxorubicin-induced cardiac toxicity in rats. Pharm. Biol. 51, 339-344. https://doi.org/10.3109/13880209.2012.729065
  2. Bagchi, D., Bagchi, M., Stohs, S. J., Das, D. K., Ray, S. D., Kuszynski, C. A., Joshi, S. S. and Pruess, H. G. 2000. Free radicals and grape seed proanthocyanidin extract: importance in human health and disease prevention. Toxicology 148, 187-197. https://doi.org/10.1016/S0300-483X(00)00210-9
  3. Bagchi, D., Garg, A., Krohn, R. L., Bagchi, M., Tran, M. X. and Stohs, S. J. 1997. Oxygen free radical scavenging abilities of vitamins C and E, and a grape seed proanthocyanidin extract in vitro. Res. Commun. Mol. Pathol. Pharmacol. 95, 179-189.
  4. Braune, J., Weyer, U., Hobusch, C., Mauer, J., Bruning, J. C., Bechmann, I. and Gericke, M. 2017. IL-6 Regulates M2 Polarization and local proliferation of adipose tissue macrophages in obesity. J. Immunol. 198, 2927-2934. https://doi.org/10.4049/jimmunol.1600476
  5. De Simone, V., Franze, E., Ronchetti, G., Colantoni, A., Fantini, M. C., Di Fusco, D., Sica, G. S., Sileri, P., Mac Donald, T. T., Pallone, F., Monteleone, G. and Stolfi, C. 2015. Th17-type cytokines, IL-6 and TNF-${\alpha}$ synergistically activate STAT3 and NF-${\kappa}B$ to promote colorectal cancer cell growth. Oncogene 34, 3493-503. https://doi.org/10.1038/onc.2014.286
  6. Dennery, P. A. 2014. Signaling function of heme oxygenase proteins. Antioxid. Redox. Signal. 20, 1743-1753. https://doi.org/10.1089/ars.2013.5674
  7. El-Shitany, N. A. and Eid, B. 2017. Proanthocyanidin protects against cisplatin-induced oxidative liver damage through inhibition of inflammation and NF-${\kappa}B$/TLR-4 pathway. Environ. Toxicol. 32, 1952-1963. https://doi.org/10.1002/tox.22418
  8. He, L., Li, P., Yu, L. H., Li, L., Zhang, Y., Guo, Y., Long, M., He, J. B. and Yang, S. H. 2018. Protective effects of proanthocyanidins against cadmium-induced testicular injury through the modification of Nrf2-Keap1 signal path in rats. Environ. Toxicol. Pharmacol. 57, 1-8. https://doi.org/10.1016/j.etap.2017.11.002
  9. Lee, T. S. and Chau, L. Y. 2002. Heme oxygenase-1 mediates the anti-inflammatory effect of interleukin-10 in mice, Nat. Med. 8, 240-246. https://doi.org/10.1038/nm0302-240
  10. Lind, M., Hayes, A., Caprnda, M., Petrovic, D., Rodrigo, L., Kruzliak, P. and Zulli, A. 2017. Inducible nitric oxide synthase: Good or bad? Biomed. Pharmacother. 93, 370-375. https://doi.org/10.1016/j.biopha.2017.06.036
  11. Long, M., Yang, S., Zhang, Y., Li, P., Han, J., Dong, S., Chen, X. and He, J. 2017. Proanthocyanidin protects against acute zearalenone-induced testicular oxidative damage in male mice. Environ. Sci. Pollut. Res. Int. 24, 938-946. https://doi.org/10.1007/s11356-016-7886-4
  12. Matzneller, P., Strommer, S., Drucker, C., Petroczi, K., Schorgenhofer, C., Lackner, E., Jilma, B. and Zeitlinger, M. 2017. Colistin reduces LPS-triggered inflammation in a human sepsis model in vivo: A randomized controlled trial. Clin. Pharmacol. Ther. 101, 773-781. https://doi.org/10.1002/cpt.582
  13. Morse, D., Pischke, S. E., Zhou, Z., Davis, R. J., Flavell, R. A., Loop, T., Otterbein, S. L., Otterbein, L. E. and Choi, A. M. 2003. Suppression of inflammatory cytokine production by carbon monoxide involves the JNK pathway and AP-1. J. Biol. Chem. 278, 36993-36998. https://doi.org/10.1074/jbc.M302942200
  14. Otterbein, L. E., Bach, F. H., Alam, J., Soares, M., Tao Lu, H., Wysk, M., Davis, R. J., Flavell, R. A. and Choi, A. M. 2000. Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein kinase pathway. Nat. Med. 6, 422-428. https://doi.org/10.1038/74680
  15. Paine, A., Eiz-Vesper, B., Blasczyk, R. and Immenschuh, S. 2010. Signaling to heme oxygenase-1 and its anti-inflammatory therapeutic potential. Biochem. Pharmacol. 80, 1895-1903. https://doi.org/10.1016/j.bcp.2010.07.014
  16. Ravindranathan, P., Pasham, D., Balaji, U., Cardenas, J., Gu, J., Toden, S. and Goel, A. 2018. Mechanistic insights into anticancer properties of oligomeric proanthocyanidins from grape seeds in colorectal cancer. Carcinogenesis 39, 767-777. https://doi.org/10.1093/carcin/bgy034
  17. Rochette, L., Cottin, Y., Zeller, M. and Vergely, C. 2013. Carbon monoxide: mechanisms of action and potential clinical implications. Pharmacol. Ther. 137, 133-152. https://doi.org/10.1016/j.pharmthera.2012.09.007
  18. Sarady-Andrews, J. K., Liu, F., Gallo, D., Nakao, A., Overhaus, M., Ollinger, R., Choi, A. M. and Otterbein, L. E. 2005. Biliverdin administration protects against endotoxin-induced acute lung injury in rats. Am. J. Physiol. Lung Cell Mol. Physiol. 289, L1131-L1137. https://doi.org/10.1152/ajplung.00458.2004
  19. Shahat, A. A., Ismail, S. I., Hammouda, F. M., Azzam, S. A., Lemiere, G., De Bruyne, T., De Swaef, S., Pieters, L. and Vlietinck, A. 1998. Anti-HIV activity of flavonoids and proanthocyanidins from Crataegus sinaica. Phytomedicine 5, 133-136. https://doi.org/10.1016/S0944-7113(98)80010-X
  20. Shapouri-Moghaddam, A., Mohammadian, S., Vazini, H., Taghadosi, M., Esmaeili, S. A., Mardani, F., Seifi. B., Mohammadi, A., Afshari, J. T. and Sahebkar, A. 2018. Macrophage plasticity, polarization, and function in health and disease. J. Cell. Physiol. 233, 6425-6440.
  21. Srisook, K., Han, S. S., Choi, H. S., Li, M. H., Ueda, H., Kim, C. and Cha, Y. N. 2006. CO from enhanced HO activity or from CORM-2 inhibits both O2- and NO production and downregulates HO-1 expression in LPS-stimulated macrophages. Biochem. Pharmacol. 71, 307-318. https://doi.org/10.1016/j.bcp.2005.10.042
  22. Su, X., Howell, A. B. and D'Souza, D. H. 2010. Antiviral effects of cranberry juice and cranberry proanthocyanidins on foodborne viral surrogates--a time dependence study in vitro. Food Microbiol. 27, 985-991. https://doi.org/10.1016/j.fm.2010.05.027
  23. Takeda, T. A., Sasai, M., Adachi, Y., Ohnishi, K., Fujisawa, J. I., Izawa, S. and Taketani, S. 2017. Potential role of heme metabolism in the inducible expression of heme oxygenase-1. Biochim. Biophys. Acta Gen. Subj. 1861, 1813-1824. https://doi.org/10.1016/j.bbagen.2017.03.018
  24. Yang, G., Li, Y., Wu, W., Liu, B., Ni, L., Wang, Z., Miao, S., Wang, L. and Liu, C. 2015. Anti-oxidant effect of heme oxygenase-1 on cigarette smoke-induced vascular injury. Mol. Med. Rep. 12, 2481-2486. https://doi.org/10.3892/mmr.2015.3722
  25. Yang, L., Xian, D., Xiong, X., Lai, R., Song, J. and Zhong, J. 2018. Proanthocyanidins against oxidative stress: From molecular mechanisms to clinical applications. Biomed. Res. Int. 2018, 8584136.
  26. Wang, Y. R., Chen, K. L., Li, C. M., Li, L. and Wang, G. L. 2019. Heme oxygenase 1 regulates apoptosis induced by heat stress in bovine ovarian granulosa cells via the ERK1/2 pathway. J. Cell. Physiol. 234, 3961-3972. https://doi.org/10.1002/jcp.27169
  27. Zhang, R. G., Pan, K., Hao, Y., Yip, C. Y. and Ko, W. H. 2019. Anti-inflammatory action of HO-1/CO in human bronchial epithelium in response to cationic polypeptide challenge. Mol. Immunol. 105, 205-212. https://doi.org/10.1016/j.molimm.2018.12.002