DOI QR코드

DOI QR Code

A Formulated Korean Red Ginseng Extract Inhibited Nitric Oxide Production through Akt- and Mitogen Activated Protein Kinase-dependent Heme Oxygenase-1 Upregulation in Lipoteichoic Acid-stimulated Microglial Cells

홍삼추출액은 lipoteichoic acid로 자극된 소교세포에서 Akt 및 MAPK 의존적으로 heme oxygenase-1 발현을 유도함으로써 NO 생성을 억제함

  • Shin, Ji Eun (Department of Molecular Biology, College of Natural Sciences, Pusan National University) ;
  • Lee, Kyungmin (Department of Molecular Biology, College of Natural Sciences, Pusan National University) ;
  • Kim, Ji-Hee (BK21Plus Research Group for Longevity and Marine Biotechnology, Pusan National University) ;
  • Madhi, Iskander (Department of Molecular Biology, College of Natural Sciences, Pusan National University) ;
  • Kim, YoungHee (Department of Molecular Biology, College of Natural Sciences, Pusan National University)
  • 신지은 (부산대학교 자연과학대학 분자생물학과) ;
  • 이경민 (부산대학교 자연과학대학 분자생물학과) ;
  • 김지희 (BK21플러스 장수해양바이오사업단) ;
  • 이스칸더 마디 (부산대학교 자연과학대학 분자생물학과) ;
  • 김영희 (부산대학교 자연과학대학 분자생물학과)
  • Received : 2018.12.07
  • Accepted : 2019.01.10
  • Published : 2019.04.30

Abstract

Korean red ginseng made from steaming and drying fresh ginseng has long been used as a traditional herbal medicine due to its effects on the immune, endocrine, and central nerve systems and its anti-inflammatory activity. In this study, we investigated the molecular mechanism responsible for the anti-inflammatory effects of a formulated Korean red ginseng extract (RGE) in response to lipoteichoic acid (LTA), a cell wall component of gram-positive bacteria. RGE inhibited LTA-induced nitric oxide (NO) secretion and inducible nitric oxide synthase (iNOS) expression in BV-2 microglial cells, without affecting cell viability. RGE also inhibited nuclear translocation of nuclear factor kappa B ($NF-{\kappa}B$) p65 and degradation of $I{\kappa}B-{\alpha}$. In addition, RGE increased the expression of heme oxygenase-1 (HO-1) in a dose-dependent manner, and the inhibitory effect of RGE on iNOS expression was abrogated by small interfering RNA-mediated knockdown of HO-1. Moreover, RGE induced nuclear translocation of nuclear factor E2-related factor 2 (Nrf2), a transcription factor that regulates HO-1 expression. Furthermore, the phosphoinositide-3-kinase (PI-3K) inhibitor and mitogen-activated protein kinase (MAPK) inhibitors suppressed RGE-mediated expression of HO-1, and RGE enhanced the phosphorylation of Akt, extracellular signal-regulated kinases (ERKs), p38, and c-JUN N-terminal kinases (JNKs). These results suggested that RGE suppressed the production of NO, a proinflammatory mediator, by inducing HO-1 expression via PI-3K/Akt- and MAPK-dependent signaling in LTA-stimulated microglia. The findings indicate that RGE could be used for the treatment of neuroinflammation induced by grampositive bacteria and that it may have therapeutic potential for various neuroinflammation-associated disorders.

생삼을 쪄서 건조시킨 홍삼은 전통적으로 사용되고 있는 약재로서 면역, 내분비 및 중추신경계 작용을 증진시키며 염증을 억제하는 효과가 있는 것으로 알려져 있다. 본 연구에서는 그람 양성균의 세포벽 성분인 lipoteichoic acid (LTA)에 의한 염증반응에 홍삼추출액(RGE)이 항염증 효과를 가지는지 관찰하고 그 작용 기전을 연구하였다. BV-2 소교세포에서 RGE는 세포에 독성을 유도하지 않으면서 LTA로 인한 nitric oxide (NO)의 생성과 inducible nitric oxide synthase (iNOS) 발현을 억제하였으며, NF-kB p65의 핵으로의 이동과 IkB-a의 분해 또한 억제하였다. 한편, RGE는 농도의존적으로 heme oxygenase-1 (HO-1)의 발현을 유도하였으며, HO-1 siRNA를 처리했을 때는 RGE가 iNOS의 발현을 억제하지 못하였다. RGE는 HO-1의 발현에 관여하는 전사인자인 nuclear factor E2-related factor 2 (Nrf2)를 핵으로 이동을 촉진시켰다. 또한 RGE에 의한 HO-1의 발현은 phosphatidylinositol-3-kinase(PI-3K) 및 MAPK 억제제에 의해 감소되었으며, RGE가 Akt와 ERK, p38, JNK의 인산화를 유도하였다. 이상의 결과를 종합해보면, RGE는 PI-3K/Akt 및 ERK, p38, JNK 신호전달과정을 통해 HO-1의 발현을 유도함으로써 NO와 같은 염증매개물질의 생성을 억제한다는 것을 알 수 있다. 그러므로 홍삼추출액은 그람 양성균에 의한 신경염증과 염증관련 신경계 질환의 치료제로서 사용될 수 있을 것이라 사료된다.

Keywords

SMGHBM_2019_v29n4_402_f0001.png 이미지

Fig. 1. RGE inhibits NO production and iNOS expression in LTA-stimulated microglial cells.

SMGHBM_2019_v29n4_402_f0002.png 이미지

Fig. 2. RGE inhibits LTA-induced NF-κB activation.

SMGHBM_2019_v29n4_402_f0003.png 이미지

Fig. 3. RGE-induced HO-1 suppresses iNOS expression.

SMGHBM_2019_v29n4_402_f0004.png 이미지

Fig. 4. Effects of RGE on nuclear translocation of Nrf2.

SMGHBM_2019_v29n4_402_f0005.png 이미지

Fig. 5. Involvement of Akt and MAPKs in RGE-mediated expression of HO-1.

References

  1. Ahn, K. S. and Aggarwal, B. B. 2005. Transcription factor NF-${\kappa}B$: A sensor for smoke and stress signals. Ann. N. Y. Acad. Sci. 1056, 218-233. https://doi.org/10.1196/annals.1352.026
  2. Andrews, N. C. and Faller, D. V. 1991. A rapid micropreparation technique for extraction of DNA-binding proteins from limiting numbers of mammalian cells. Nucleic Acids Res. 19, 2499. https://doi.org/10.1093/nar/19.9.2499
  3. Attele, A. S., Wu, J. A. and Yuan, C. S. 1999. Ginseng pharmacology: Multiple constituents and multiple actions. Biochem. Pharmacol. 58, 1685-1693. https://doi.org/10.1016/S0006-2952(99)00212-9
  4. Bal-Price, A. and Brown, G. C. 2001. Inflammatory neurodegeneration mediated by nitric oxide from activated gliainhibiting neuronal respiration, causing glutamate release and excitotoxicity. J. Neurosci. 21, 6480-6491. https://doi.org/10.1523/JNEUROSCI.21-17-06480.2001
  5. Bhattacharya, S. K. and Mitra, S. K. 1991. Anxiolytic activity of Panax ginseng roots: An experimental study. J. Ethnopharmacol. 34, 87-92. https://doi.org/10.1016/0378-8741(91)90193-H
  6. Blackwell, T. S., Blackwell, T. R., Holden, E. P., Christman, B. W. and Christman, J. W. 1996. In vivo antioxidant treatment suppresses nuclear factor-kappa B activation and neutrophilic lung inflammation. J. Immunol. 157, 1630-1637.
  7. Block, K. I. and Mead, M. N. 2003. Immune system effects of echinacea, ginseng, and astragalus: A review. Integr. Cancer Ther. 2, 247-267. https://doi.org/10.1177/1534735403256419
  8. Doherty, G. H. 2011. Nitric oxide in neurodegeneration: Potential benefits of non-steroidal anti-inflammatories. Neurosci. Bull. 27, 366-382. https://doi.org/10.1007/s12264-011-1530-6
  9. Gillis, C. N. 1997. Panax ginseng pharmacology: A nitric oxide link? Biochem. Pharmacol. 54, 1-8. https://doi.org/10.1016/S0006-2952(97)00193-7
  10. Giridharan, S. and Srinivasan, M. 2018. Mechanisms of NF-kappaB p65 and strategies for therapeutic manipulation. J. Inflamm. Res. 11, 407-419. https://doi.org/10.2147/JIR.S140188
  11. He, M., Huang, X., Liu, S., Guo, C., Xie, Y., Meijer, A. H. and Wang, M. 2018. The difference between white and red ginseng: Variations in ginsenosides and immunomodulation. Planta Med. 84, 845-854. https://doi.org/10.1055/a-0641-6240
  12. Jazwa, A. and Cuadrado, A. 2010. Targeting heme oxygenase-1 for neuroprotection and neuroinflammation in neurodegenerative diseases. Curr. Drug Targets 11, 1517-1531. https://doi.org/10.2174/1389450111009011517
  13. Jiang-Shieh, Y. F., Yeh, K. Y., Wei, I. H., Chang, C. Y., Chien, H. F., Tsai, R. Y., Chang, M. L., Lee, A. W., Pai, M. H. and Wu, C. H. 2005. Responses of microglia in vitro to the gram-positive bacterial component, lipoteichoic acid. J. Neurosci. Res. 82, 515-524. https://doi.org/10.1002/jnr.20663
  14. Jin, Y., Kotakadi, V. S., Ying, L., Hofseth, A. B., Cui, X., Wood, P. A., Windust, A., Matesic, L. E., Pena, E. A., Chiuzan, C., Singh, N. P., Nagarkatti, M., Nagarkatti, P. S., Wargovich, M. J. and Hofseth, L. J. 2008. American ginseng suppresses inflammation and DNA damage associated with mouse colitis. Carcinogenesis 29, 2351-2359. https://doi.org/10.1093/carcin/bgn211
  15. Kang, A., Hao, H., Zheng, X., Liang, Y., Xie, Y., Xie, T., Dai, C., Zhao, Q., Wu, X., Xie, L. and Wang, G. 2011. Peripheral anti-inflammatory effects explain the ginsenosides paradox between poor brain distribution and anti-depression efficacy. J. Neuroinflammation 8, 100. https://doi.org/10.1186/1742-2094-8-100
  16. Kang, A., Xie, T., Zhu, D., Shan, J., Di, L. and Zheng, X. 2017. Suppressive effect of ginsenoside Rg3 against lipopolysaccharide-induced depression-like behavior and neuroinflammation in mice. J. Agric. Food Chem. 65, 6861-6869. https://doi.org/10.1021/acs.jafc.7b02386
  17. Keyse, S. M. and Tyrrell, R. M. 1989. Heme oxygenase is the major 32-kDa stress protein induced in human skin fibroblasts by UVA radiation, hydrogen peroxide, and sodium arsenite. Proc. Natl. Acad. Sci. USA. 86, 99-103. https://doi.org/10.1073/pnas.86.1.99
  18. Kim, J. H., Park, G. Y., Bang, S. Y., Park, S. Y., Bae, S. K. and Kim, Y. 2014. Crocin suppresses LPS-stimulated expression of inducible nitric oxide synthase by upregulation of heme oxygenase-1 via calcium/calmodulin-dependent protein kinase 4. Mediators Inflamm. 2014, 728709.
  19. Lee, J. S., Song, J. H., Sohn, N. W. and Shin, J. W. 2013. Inhibitory effects of ginsenoside Rb1 on neuroinflammation following systemic lipopolysaccharide treatment in mice. Phytother. Res. 27, 1270-1276. https://doi.org/10.1002/ptr.4852
  20. Lee, K. W., Jung, S. Y., Choi, S. M. and Yang, E. J. 2012. Effects of ginsenoside re on LPS-induced inflammatory mediators in BV2 microglial cells. BMC Complement. Altern. Med. 12, 196. https://doi.org/10.1186/1472-6882-12-S1-P196
  21. Lee, Y. Y., Park, J. S., Lee, E. J., Lee, S. Y., Kim, D. H., Kang, J. L. and Kim, H. S. 2015. Anti-inflammatory mechanism of ginseng saponin metabolite Rh3 in lipopolysaccharide-stimulated microglia: Critical role of 5'-adenosine monophosphate-activated protein kinase signaling pathway. J. Agric. Food Chem. 63, 3472-3480. https://doi.org/10.1021/jf506110y
  22. Lin, W. M., Zhang, Y. M., Moldzio, R. and Rausch, W. D. 2007. Ginsenoside Rd attenuates neuroinflammation of dopaminergic cells in culture. J. Neural Transm. Suppl. 72, 105-112. https://doi.org/10.1007/978-3-211-73574-9_13
  23. Liu, Y., Yin, H., Zhao, M. and Lu, Q. 2014. TLR2 and TLR4 in autoimmune diseases: A comprehensive review. Clin. Rev. Allergy Immunol. 47, 136-147. https://doi.org/10.1007/s12016-013-8402-y
  24. Lull, M. E. and Block, M. L. 2010. Microglial activation and chronic neurodegeneration. Neurotherapeutics 7, 354-365. https://doi.org/10.1016/j.nurt.2010.05.014
  25. Motohashi, H., Katsuoka, F., Engel, J. D. and Yamamoto, M. 2004. Small Maf proteins serve as transcriptional cofactors for keratinocyte differentiation in the Keap1-Nrf2 regulatory pathway. Proc. Natl. Acad. Sci. USA. 101, 6379-6384. https://doi.org/10.1073/pnas.0305902101
  26. Neher, J. J. and Brown, G. C. 2007. Neurodegeneration in models of Gram-positive bacterial infections of the central nervous system. Biochem. Soc. Trans. 35, 1166-1167. https://doi.org/10.1042/BST0351166
  27. Nemmiche, S., Chabane-Sari, D., Kadri, M. and Guiraud, P. 2012. Cadmium-induced apoptosis in the BJAB human B cell line: Involvement of PKC/ERK1/2/JNK signaling pathways in HO-1 expression. Toxicology 300, 103-111. https://doi.org/10.1016/j.tox.2012.05.003
  28. Otterbein, L. E., Bach, F. H., Alam, J., Soares, M., Tao Lu, H., Wysk, M., Davis, R. J., Flavell, R. A. and Choi, A. M. 2000. Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein kinase pathway. Nat. Med. 6, 422-428. https://doi.org/10.1038/74680
  29. Park, J. S., Shin, J. A., Jung, J. S., Hyun, J. W., Van Le, T. K., Kim, D. H., Park, E. M. and Kim, H. S. 2012. Anti-inflammatory mechanism of compound K in activated microglia and its neuroprotective effect on experimental stroke in mice. J. Pharmacol. Exp. Ther. 341, 59-67. https://doi.org/10.1124/jpet.111.189035
  30. Ryter, S. W. and Choi, A. M. 2010. Heme oxygenase-1/carbon monoxide: Novel therapeutic strategies in critical care medicine. Curr. Drug Targets 11, 1485-1494. https://doi.org/10.2174/1389450111009011485
  31. Schwandner, R., Dziarski, R., Wesche, H., Rothe, M. and Kirschning, C. J. 1999. Peptidoglycan- and lipoteichoic acid-induced cell activation is mediated by toll-like receptor 2. J. Biol. Chem. 274, 17406-17409. https://doi.org/10.1074/jbc.274.25.17406
  32. Segain, J. P., Raingeard, de la Bletiere, D., Bourreille, A., Leray, V., Gervois, N., Rosales, C., Ferrier, L., Bonnet, C., Blottiere, H. M. and Galmiche, J. P. 2000. Butyrate inhibits inflammatory responses through NFkappaB inhibition: Implications for crohn's disease. Gut 47, 397-403. https://doi.org/10.1136/gut.47.3.397
  33. Shin, H. R., Kim, J. Y., Yun, T. K., Morgan, G. and Vainio, H. 2000. The cancer-preventive potential of Panax ginseng: A review of human and experimental evidence. Cancer Causes Control 11, 565-576. https://doi.org/10.1023/A:1008980200583
  34. Srisook, K., Kim, C. and Cha, Y. N. 2005. Molecular mechanisms involved in enhancing HO-1 expression: De-repression by heme and activation by Nrf2, the "one-two" punch. Antioxid. Redox Signal. 7, 1674-1687. https://doi.org/10.1089/ars.2005.7.1674
  35. Sun, X. C., Ren, X. F., Chen, L., Gao, X. Q., Xie, J. X. and Chen, W. F. 2016. Glucocorticoid receptor is involved in the neuroprotective effect of ginsenoside Rg1 against inflammation-induced dopaminergic neuronal degeneration in substantia nigra. J. Steroid Biochem Mol. Biol. 155, 94-103. https://doi.org/10.1016/j.jsbmb.2015.09.040
  36. Sun, Z., Huang, Z. and Zhang, D. D. 2009. Phosphorylation of Nrf2 at multiple sites by MAP kinases has a limited contribution in modulating the Nrf2-dependent antioxidant response. PLoS One 4, e6588. https://doi.org/10.1371/journal.pone.0006588
  37. Tieu, K., Ischiropoulos, H. and Przedborski, S. 2003. Nitric oxide and reactive oxygen species in parkinson's disease. IUBMB Life 55, 329-335. https://doi.org/10.1080/1521654032000114320
  38. Van Eldik, L. J., Thompson, W. L., Ralay Ranaivo, H., Behanna, H. A. and Martin Watterson, D. 2007. Glia proinflammatory cytokine upregulation as a therapeutic target for neurodegenerative diseases: Function-based and target-based discovery approaches. Int. Rev. Neurobiol. 82, 277-296. https://doi.org/10.1016/S0074-7742(07)82015-0
  39. Wakabayashi, C., Murakami, K., Hasegawa, H., Murata, J. and Saiki, I. 1998. An intestinal bacterial metabolite of ginseng protopanaxadiol saponins has the ability to induce apoptosis in tumor cells. Biochem. Biophys. Res. Commun. 246, 725-730. https://doi.org/10.1006/bbrc.1998.8690
  40. Wei, T., Chen, C., Hou, J., Xin, W. and Mori, A. 2000. Nitric oxide induces oxidative stress and apoptosis in neuronal cells. Biochim. Biophys. Acta 1498, 72-79. https://doi.org/10.1016/S0167-4889(00)00078-1
  41. Yang, Y., Yang, W. S., Yu, T., Sung, G. H., Park, K. W., Yoon, K., Son, Y. J., Hwang, H., Kwak, Y. S., Lee, C. M., Rhee, M. H., Kim, J. H. and Cho, J. Y. 2014. ATF-2/CREB/IRF-3-targeted anti-inflammatory activity of Korean red ginseng water extract. J. Ethnopharmacol. 154, 218-228. https://doi.org/10.1016/j.jep.2014.04.008