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CESÀRO-HYPERCYCLIC AND HYPERCYCLIC OPERATORS

Mohammed El Berrag and Abdelaziz Tajmouati

Abstract. In this paper we provide a Cesàro-hypercyclicity criterion and

offer two examples of this criterion. At the same time, we also characterize

other properties of Cesàro-hypercyclic operators.

1. Introduction

Let H be a separable infinite dimensional Hilbert space over the scalar field
C. As usual, N is the set of all non-negative integers, Z is the set of all integers,
and B(H) is the space of all bounded linear operators on H. A bounded linear
operator T : H → H is called hypercyclic if there is some vector x ∈ H such
that Orb(T, x) = {Tnx : n ∈ N} is dense in H, where such a vector x is said
hypercyclic for T .

The first example of hypercyclic operator was given by Rolewicz in [11].
He proved that if B is a backward shift on the Banach space lp, then λB is
hypercyclic if and only if |λ| > 1.

Let {en}n≥0 be the canonical basis of l2(N). If {wn}n∈≥1 is a bounded
sequence in C\{0}, then the unilateral backward weighted shift T : l2(N) −→
l2(N) is defined by Ten = wnen−1, n ≥ 1, Te0 = 0, and let {en}n∈Z be the
canonical basis of l2(Z). If {wn}n∈Z is a bounded sequence in C\{0}, then
the bilateral weighted shift T : l2(Z) −→ l2(Z) is defined by Ten = wnen−1.
The definition and the properties of supercyclicity operators were introduced
by Hilden and Wallen [8]. They proved that all unilateral backward weighted
shifts on a Hilbert space are supercyclic.

A bounded linear operator T ∈ B(H) is called supercyclic if there is some
vector x ∈ H such that the projective orbit C.Orb(T, x) = {λTnx : λ ∈ C, n ∈
N} is dense in X. Such a vector x is said supercyclic for T. Refer to [1,3,7,14]
for more informations about hypercyclicity and supercyclicity.

A nice criterion namely hypercyclicity criterion, was developed indepen-
dently by Kitai [9] and, Gethner and Shapiro [6]. The hypercyclicity criterion
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has been widely used to show that many different types of operators are hyper-
cyclic. For instance hypercyclic operators arise in the classes of composition
operators [2], adjoints of multiplication operators [6], cohyponormal operators
[5], and weighted shifts [12].

For the following theorem, see [1, 7].

Theorem 1.1 (Hypercyclicity Criterion). Suppose that T ∈ B(H). If there
exist two dense subsets X0 and Y0 in H and an increasing sequence nj of
positive integer such that:

(1) Tnjx→ 0 for each x ∈ X0, and
(2) there exist mappings Snj : Y0 −→ H such that Snjy → 0, and TnjSnjy
→ y for each y ∈ Y0,

then T is hypercyclic.

In [12] and [13], Salas characterized the bilateral weighted shifts that are
hypercyclic and those that are supercyclic in terms of their weight sequence.
In [4], N. Feldman gave a characterization of the invertible bilateral weighted
shifts that are hypercyclic or supercyclic.

For the following theorem, see [4, Theorem 4.1].

Theorem 1.2. Suppose that T : l2(Z) −→ l2(Z) is a bilateral weighted shift
with weight sequence (wn)n∈Z and either wn ≥ m > 0 for all n < 0 or wn ≤ m
for all n > 0. Then:

(1) T is hypercyclic if and only if there exists a sequence of integers nk →∞
such that limk→∞

∏nk

j=1 wj = 0 and limk→∞
∏nk

j=1
1

w−j
= 0.

(2) T is supercyclic if and only if there exists a sequence of integers nk →∞
such that limk→∞(

∏nk

j=1 wj)(
∏nk

j=1
1

w−j
) = 0.

Let Mn(T ) denote the arithmetic mean of the powers of T ∈ B(H), that is

Mn(T ) =
1 + T + T 2 + · · ·+ Tn−1

n
, n ∈ N∗.

If the arithmetic means of the orbit of x are dense in H, then the operator T
is said to be Cesàro-hypercyclic. In [10], Fernando León-Saavedra proved that
an operator is Cesàro-hypercyclic if and only if there exists a vector x ∈ H
such that the orbit {n−1Tnx}n≥1 is dense in H and characterized the bilateral
weighted shifts that are Cesàro-hypercyclic.

For the following proposition, see [10, Proposition 3.4].

Proposition 1.1. Let T : l2(Z) −→ l2(Z) be a bilateral weighted shift with
weight sequence (wn)n∈Z. Then T is Cesàro-hypercyclic if and only if there
exists an increasing sequence nk of positive integers such that for any integer
q,

limk→∞
∏nk

i=1
wi+q

nk
=∞ and limk→∞

∏nk−1
i=0

wq−i

nk
= 0.
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In this paper we will give an example of a hypercyclic and supercyclic oper-
ator which is not Cesàro-hypercyclic and vice versa. Furthermore, we provide
a Cesàro-Hypercyclicity Criterion and offer two examples of this criterion. At
the same time, we also characterize other properties of Cesàro-hypercyclic op-
erators.

2. Main results

Suppose {n−1Tn : n ≥ 1} is a sequence of bounded linear operators on H.

Definition 2.1. An operator T ∈ B(H) is Cesàro-hypercyclic if and only if
there exists a vector x ∈ H such that the orbit {n−1Tnx}n≥1 is dense in H.

The following example gives an operator which is Cesàro-hypercyclic but
not hypercyclic.

Example 1 ([10]). Let T the bilateral backward shift with the weight sequence

wn =

{
1 if n ≤ 0,
2 if n ≥ 1.

Then T is not hypercyclic, but it is Cesàro-hypercyclic.

Now, we will give an example of a hypercyclic and supercyclic operator which
is not Cesàro-hypercyclic.

Example 2. Let T the bilateral backward shift with the weight sequence

wn =

{
2 if n < 0,
1
2 if n ≥ 0.

Then T is not Cesàro-hypercyclic, but it is hypercyclic and supercyclic.

Proof. By applying Theorem 1.2 and taking nk = n, we have

lim
n→∞

n∏
j=1

wj = lim
n→∞

1

2n
= 0;

and

lim
n→∞

n∏
j=1

1

w−j
= lim
n→∞

1

2n
= 0.

Furthermore, we have

lim
n→∞

(

n∏
j=1

wj)(

n∏
j=1

1

w−j
) = lim

n→∞
(

1

2n
)(

1

2n
) = 0.

Therefore by Theorem 1.2 the operator T is hypercyclic and supercyclic. How-
ever, for all increasing sequence nk = n of positive integers and taking q = 0,
we have

lim
n→∞

n∏
i=1

wi+q
n

= lim
n→∞

1

n2n
= 0,
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from Proposition 1.1, T is not Cesàro-hypercyclic. �

The following example gives us an operator which is Cesàro-hypercyclic but
not hypercyclic and supercyclic.

Example 3. Let T the bilateral backward shift with the weight sequence

wn =

{
1
2 if n < 0,
n+ 1 if n ≥ 0.

Then T is Cesàro-hypercyclic, but it is not hypercyclic and supercyclic.

Proof. By applying Proposition 1.1 and taking nk = n and q = 0, we have

lim
n→∞

n∏
i=1

wi+q
n

= lim
n→∞

(n+ 1)!

n
=∞,

and

lim
n→∞

n∏
i=0

wq−i
n

= lim
n→∞

1

n2n
= 0.

Therefore by Proposition 1.1 the operator T is Cesàro-hypercyclic. On the
other hand, we have

lim
n→∞

n∏
j=1

wj = lim
n→∞

((n+ 1)!) =∞;

and

lim
n→∞

(

n∏
j=1

wj)(

n∏
j=1

1

w−j
) = lim

n→∞
((n+ 1)!)(2n) =∞.

Therefore by Theorem 1.2 the operator T is not hypercyclic and supercyclic.
�

Definition 2.2. We say that T ∈ B(H) is Cesàro-topologically transitive if
for every nonempty open subsets U and V of H there exists n ≥ 1 such that
Tn

n (U) ∩ V 6= ∅.

Definition 2.3. We say that T ∈ B(H) is Cesàro-mixing if for every nonempty

open subsets U and V of H there exists m ≥ 1 such that Tn

n (U)∩V 6= ∅, ∀n ≥
m.

In the proof of the following lemma, we use a method of the proof of [6,
theorem 1.2]. The set of Cesàro-hypercyclic vectors for T is denoted by CH(T ).

Lemma 2.1. An operator T ∈ B(H) is Cesàro-topologically transitive if and
only if CH(T ) is dense in H.
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Proof. Fix an enumeration {Bn, n ≥ 1} of the open balls in H with rational
radii, and centers in a countable dense subset of H. By the continuity of the
sequence Tn

n the sets

Gk =
⋃
{(T

n

n
)−1(Bk) : n ∈ N∗}

are open. Clearly CH(T ) equal to⋂
{Gk : k ∈ N∗}.

Now let T be Cesàro-topologically transitive and let U by an arbitrary
nonempty open set in H. Then for all k ∈ N∗, there exist n(k) in N∗ such
that

(
Tn(k)

n(k)
)−1(U) ∩ Bk 6= ∅

which implies that U ∩ Gk 6= ∅ for all k. Thus each Gk is dense in H and so
by the Bair Category Theorem CH(T ) is also dense in H.

Conversely, if CH(T ) is dense in H, then each set Gk. This implies that T
is Cesàro-topologically transitive. �

Theorem 2.1 (Cesàro-Hypercyclicity Criterion). Suppose that T ∈ B(H). If
there exist two dense subsets X0 and Y0 in H and an increasing sequence nj of
positive integer such that:

(1) Tnj

nj
x→ 0 for each x ∈ X0, and

(2) there exist mappings Snj
: Y0 −→ H such that Snj

y → 0, and Tnj

nj
Snj

y

→ y for each y ∈ Y0,

then T is Cesàro-hypercyclic.

Proof. Let U and V are two nonempty open sets in H, then chose x ∈ X0 ∩ U
and y ∈ V ∩ Y0 and let zj = x + Snj

y. Then as j → ∞, zj → x and Tnj

nj
zj =

Tnj

nj
x + Tnj

nj
Snjy → y. Thus for large j we have zj ∈ U and Tnj

nj
zj ∈ V . By

Lemma 2.1, CH(T ) is dense in H and this implies clearly that T is Cesàro-
hypercyclic. �

Suppose T : l2(N) −→ l2(N) is a unilateral weighted shift given by Ten =
wnen−1, n ≥ 1, T e0 = 0. Let {en}n≥0 be the canonical basis of l2(N). We may

define a right inverse S of T as Sej =
n
√
n

wj+1
ej+1.

Example 4. Taking nj = n ≥ 1 and suppose limn→∞
∏n
i=1

wj+i

n = ∞ and

limn→∞
∏n−1
i=0

wj−i

n = 0. Let X0 = Y0 = span{ej : j ∈ N} and Sn = Sn, where
S is the right inverse of T. So we get

Tn

n
ej =

n−1∏
i=0

wj−i
n

ej−n → 0 for all j ∈ N.



562 M. EL BERRAG AND A. TAJMOUATI

Furthermore, we have

Snej = Snej =
n∏n

i=1 wj+i
→ 0,

and

||T
n

n
Snej − ej || = ||

Tn

n
.

n∏n
i=1 wj+i

ej+n − ej || → 0.

Hence Tn

n Snej → ej for all j ∈ N. Thus T satisfies the Cesàro-Hypercyclicity
Criterion with respect to nj = n.

Example 5. Let B : l2(N) −→ l2(N) be a backward shift with weight wn =
1, n ≥ 1 and T = λB, where |λ| > 1. Then T is Cesàro-hypercyclic.

Proof. Let B(x1, x2, . . . , xn, . . .) = (x2, x3, . . . , xn, . . .) for all (xi)i∈N ∈ l2(N
and Sn(x0, x1, . . .) = n

λn (0, 0, . . . , x0, x1, . . .). Let Y0 = X0 be the set of all

vectors in l2(N), where Y0 = {(y1, y2, . . . , yn, 0, 0, . . .) ∈ l2(N) : n ∈ N}. Now

Y0 is dense in l2(N), and Tn

n x = (λB)n

n = 0 for every x ∈ Y0, and also we
have Sny = n

λn (0, 0, . . . , y0, y1, . . .) → 0 as n → ∞, since |λ| > 1. Moreover,
Tn

n S
ny = (λB)nSn

n y = Bn(0, 0, . . . , y0, y1, . . .) = (y1, y2, . . .) = y. Therefore, by
Theorem 2.1, T = λB is Cesàro-hypercyclic. �

Proposition 2.1. Let T ∈ B(H) satisfy the Hypercyclicity Criterion with
respect to a sequence {nj}. Then T is Cesàro-mixing.

Proof. We show that T is Cesàro-mixing. Let X0 and Y0 be dense sets in H,
that are given in the Cesàro-hypercyclicity Criterion. Let U and V are two
nonempty open sets in H, then choose x ∈ X0 ∩ U and y ∈ V ∩ Y0 and ε > 0
such that B(x, ε) ⊂ U and B(y, ε) ⊂ V. By Theorem 2.1, there exists j0 ∈ N∗ so

that for all j ≥ j0, ||T
nj

nj
x|| ≤ ε, ||Snj

(y)|| ≤ ε, and ||T
nj

nj
Snj

(y)− y|| ≤ ε. Then

for each j ≥ j0 we have zj = x+Snj
y ∈ B(x, ε) ⊂ U and Tnj

nj
zj ∈ B(y, ε) ⊂ V .

That is, Tnj

nj
(U) ∩ V 6= ∅,∀j ≥ j0. Hence T is Cesàro-mixing. �

Let J := {(x, y) ∈ H ×H;∃(un)n∈N∗ ⊂ X : un → x and Tn

n un → y}

Proposition 2.2. Let T ∈ B(H) and J be dense in H×H. Then T is Cesàro-
mixing.

Proof. Let U and V are two nonempty open sets in H. Since J is dense in
H × H, we can find x ∈ U and y ∈ V such that (x, y) ∈ J. By definition

of J, there is a sequence (un)n∈N∗ ⊂ X such that un → x and Tn

n un → y.

Then, there exists k0 ∈ N∗ such that un ∈ U and Tn

n un ∈ V ∀k ≥ k0. Hence
Tn

n (U) ∩ V 6= ∅, ∀k ≥ k0. That is T is Cesàro-mixing. �



CESÀRO-HYPERCYCLIC AND HYPERCYCLIC OPERATORS 563

References

[1] F. Bayart and E. Matheron, Dynamics of Linear Operators, Cambridge Tracts in Math-

ematics, 179, Cambridge University Press, Cambridge, 2009.

[2] P. S. Bourdon and J. H. Shapiro, Cyclic phenomena for composition operators, Mem.
Amer. Math. Soc. 125 (1997), no. 596, x+105 pp.

[3] M. El Berrag and A. Tajmouati, On subspace-supercyclic semigroup, Commun. Korean

Math. Soc. 33 (2018), no. 1, 157–164.
[4] N. S. Feldman, Hypercyclicity and supercyclicity for invertible bilateral weighted shifts,

Proc. Amer. Math. Soc. 131 (2003), no. 2, 479–485.

[5] N. S. Feldman, V. G. Miller, and T. L. Miller, Hypercyclic and supercyclic cohyponormal
operators, Acta Sci. Math. (Szeged) 68 (2002), no. 1-2, 303–328.

[6] R. M. Gethner and J. H. Shapiro, Universal vectors for operators on spaces of holomor-

phic functions, Proc. Amer. Math. Soc. 100 (1987), no. 2, 281–288.
[7] K.-G. Grosse-Erdmann and A. Peris Manguillot, Linear Chaos, Universitext, Springer,

London, 2011.
[8] H. M. Hilden and L. J. Wallen, Some cyclic and non-cyclic vectors of certain operators,

Indiana Univ. Math. J. 23 (1973/74), 557–565.

[9] C. Kitai, Invariant Closed Sets for Linear Operators, ProQuest LLC, Ann Arbor, MI,
1982.

[10] F. León-Saavedra, Operators with hypercyclic Cesàro means, Studia Math. 152 (2002),
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