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A MODIFIED POLYNOMIAL SEQUENCE OF THE

CHEBYSHEV POLYNOMIALS OF THE SECOND KIND

Seon-Hong Kim

Abstract. Dilcher and Stolarsky [1] recently studied a sequence resem-
bling the Chebyshev polynomials of the first kind. In this paper, we

follow their some research directions to the Chebyshev polynomials of

the second kind. More specifically, we consider a sequence resembling
the Chebyshev polynomials of the second kind in two different ways, and

investigate its properties including relations between this sequence and

the sequence studied in [1], zero distribution and the irreducibility.

1. Introduction

Chebyshev polynomials are of great importance in many areas of mathemat-
ics, particularly approximation theory. Many papers and books ([2], [3]) have
been written about these polynomials. The well-known Chebyshev polynomials
are Tn(x) and Un(x) that are called the Chebyshev polynomials of first kind
and of the second kind, respectively. These polynomials satisfy the recurrence
relations

T0(x) = 1, T1(x) = x, Tn+1(x) = 2xTn(x)− Tn−1(x), (n ≥ 1)

U0(x) = 1, U1(x) = 2x, Un+1(x) = 2xUn(x)− Un−1(x) (n ≥ 1).

Dilcher and Stolarsky [1] recently studied a sequence resembling the Cheby-
shev polynomials of the first kind {Vn(x)} defined by the nonlinear recurrence
relation V0(x) = 1, V1(x) = x, and

(1) Vn+1(x) = 2xVn(x)− Vn−1(x)− xn+1 (n ≥ 1).

They gave an alternative definition of the polynomial sequence {Vn(x)} and
investigated several properties of {Vn(x)} including relations between {Vn(x)}
and {Tn(x)}, their irreducibility and zero distribution. A next research in this
vein seems to follow [1] to the study of the same kind of a modified polynomial
sequence of the Chebyshev polynomials of the second kind. For this purpose, in
this paper we define a sequence resembling the Chebyshev polynomials of the
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second kind {En(x)} by the nonlinear recurrence relation E0(x) = 1, E1(x) =
2x, and

(2) En+1(x) = 2xEn(x)− En−1(x)− 2xn+1 (n ≥ 1)

and study its properties including relations between {En(x)} and {Un(x)},
their irreducibility and zero distribution.

2. The polynomial sequence {En(x)}

We start with providing an alternative definition of the polynomial sequence
{En(x)}. If p(x) ∈ Z[x], let B(p(x)) be the polynomial obtained from p(x) by
dividing the leading coefficients by 2. For example, B(2x5 − 4x3 + x2 + 1) =

x5 − 4x3 + x2 + 1. Using this, we define the sequence of polynomials {Ẽn(x)}
by Ẽ0(x) = 1 = E0(x), Ẽ1(x) = 2x = E1(x), and

(3) Ẽn+1(x) = B(2xẼn(x)− Ẽn−1(x)) (n ≥ 1).

We first obtain some properties of the coefficients ck
(n) of

(4) Ẽn(x) =

n∑
k=0

ck
(n)xn−k.

Proposition 1. Let n be a positive integer. Then

(a) c
(n)
2j+1 = 0 for all j ∈ {0, 1, . . . , bn−12 c},

(b) c
(n)
2j is even for all j ∈ {0, 1, . . . , bn2 c} and c

(n)
0 = 2.

Proof. Using (4), an easy summation change follows

(5) 2xẼn(x)− Ẽn−1(x) =

n+1∑
k=0

(
2ck

(n) − c
(n−1)
k−2

)
xn−k+1

with the convention c
(n)
n+1 = c

(n−1)
−2 = c

(n−1)
−1 = 0. From (3), (4) and (5), we get

Ẽn+1(x) = c
(n)
0 xn+1 +

n+1∑
k=1

(
2c

(n)
k − c

(n−1)
k−2

)
xn−k+1

and

Ẽn+1(x) =

n+1∑
k=0

c
(n+1)
k xn−k+1,

respectively. So by comparing coefficients of Ẽn+1(x) in above two equations,
we have

(6) c
(n)
0 = c0

(n+1), c
(n+1)
k = 2c

(n)
k − c

(n−1)
k−2 (1 ≤ k ≤ n + 1),

and
2x = Ẽ1(x) = c

(1)
0 x + c

(1)
1

implies that

(7) c
(1)
0 = 2 and c

(1)
1 = 0.
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We use induction on n to prove all parts of the proposition. Part (a) is true for

n = 1 since c
(1)
1 = 0 from (7). Suppose that (a) is true up to a certain n. Then

2c
(n)
k − c

(n−1)
k−2 = 0

for all odd integers k, and therefore, by (6), (a) also holds for n + 1. Part (b)

is once again true for n = 1 since c
(1)
0 = 2 from (7). Suppose that the both

assertions in (b) are true up to n. Then

2c
(n)
k − c

(n−1)
k−2

is even for all even integers k with 2 ≤ k ≤ n, while for k = 0, it is

2c
(n)
0 − c

(n−1)
−2 = 2c

(n)
0 = 2c

(1)
0 = 4.

Now (6) completes the proof. �

Using above proposition, we show that Ẽn(x) is another expression of En(x).

Proposition 2. For any nonnegative integer n,

En(x) = Ẽn(x).

Proof. By definitions, E0(x) = Ẽ0(x) = 1. We use induction on n. The case
n = 1 is obvious. Suppose that the result holds up to a certain n. From (2),
(3) and (4),

En+1(x) = 2xEn(x)− En−1(x)− 2xn+1

= 2xẼn − Ẽn−1(x)− 2xn+1

=

n+1∑
k=0

(
2ck

(n) − c
(n−1)
k−2

)
xn−k+1 − 2xn+1.

The leading coefficient of the last polynomial in above equations is 2c
(n)
0 −2 = 2

by (b) of Proposition 1. This proves

En+1(x) = B(2xẼn − Ẽn−1(x)) = Ẽn+1(x),

which completes the proof. �

In the next proposition, we see that there is a close relation between the
polynomial sequences {En(x)} and {Un(x)}.

Proposition 3. For any integer n ≥ 2, we have

(8) (x2 − 1)En(x) = 2xn+2 − Un(x) + x2Un−2(x).

Proof. We rewrite (8) as

(9) Un(x)− x2Un−2(x) = 2xn+2 − (x2 − 1)En(x),
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and denote the left-hand side and the right-hand side of (9) by Φn(x) and
Ψn(x), respectively, i.e., let Φn(x) = Un(x)−x2Un−2(x) and Ψn(x) = 2xn+2−
(x2 − 1)En(x) for n ≥ 2. Then it is easy to compute

Φ2(x) = 3x2 − 1 = Ψ2(x), Φ3(x) = 6x3 − 4x = Ψ3(x)

and

(10) Φn+2(x) = 2xΦn+1(x)− Φn(x) (n ≥ 2)

using recurrence relations of Un(x). So it suffices to show that the polynomial
sequence {Ψn(x)} satisfies the same recurrence relation with (10) of {Φn(x)}.
But

Ψn+2(x)− 2xΨn+1(x) + Ψn(x)

= 2xn+4 − 2x · 2xn+3 + 2xn+2 − (x2 − 1) (En+2(x)− 2xEn+1(x) + En(x))

= − 2xn+4 + 2xn+2 − (x2 − 1)(−2xn+2) = 0.

This proves the proposition. �

We recall (1) and (2) for the definitions of {Vn(x)} and {En(x)}. We now
show a relation between {En(x)} and {Vn(x)}. For any integer n ≥ 0,

(11) (x2 − 1)Vn(x) = xn+2 − Tn(x)

and in [1], we see that

Vn(x) = xn −
bn/2c∑
k=1

(
n

2k

)
(x2 − 1)k−1xn−2k.

In particular,

(12) Vn(1) = 1−
(
n

2

)
, Vn(−1) = (−1)n

(
1−

(
n

2

))
.

With the well-known explicit expression

Un(x) = (n + 1)xn +

bn/2c∑
k=1

(
n + 1

2k + 1

)
(x2 − 1)kxn−2k

and (8), we may compute that

En(x) = 2xn −
bn/2c−1∑

k=1

((
n + 1

2k + 1

)
−
(
n− 1

2k + 1

))
(x2 − 1)k−1xn−2k

−
(

n + 1

2bn/2c+ 1

)
(x2 − 1)bn/2c−1xn−2bn/2c

(13)

and the special values

(14) En(0) =

{
(−1)n/2 if n is even,

0 if n is odd,
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and

(15) En(1) = 2− (n− 1)2, En(−1) = (−1)n
(
2− (n− 1)2

)
.

There is a relation between {En(x)} and {Vn(x)} as follows.

Corollary 4. For any integer n ≥ 0, we have

En(x) = Vn(x) + xVn−1(x).

Proof. Using (8), (11) and a well known identity Tn(x) = Un(x) − xUn−1(x),
we have

(x2 − 1)(En(x)− Vn(x)) = xn+2 − Un(x) + x2Un−2(x) + Tn(x)

= xn+2 − Un(x) + x2Un−2(x) + Un(x)− xUn−1(x)

= xn+2 + x(xUn−2(x)− Un−1(x))

= xn+2 − xTn(x) = x(xn+1 − Tn−1(x))

= (x2 − 1)xVn−1(x),

and so for x 6= ±1, En(x) = Vn(x) +xVn−1(x). The cases when x = ±1 can be
checked from (12) and (15). �

3. Zero distribution and irreducibility

The polynomial
(x2 − 1)Vn(x) = xn+2 − Tn(x)

has n − 2 real zeros in the interval (−1, 1), zeros ±1 while the remaining two
are real, large, and of opposite sign. For the proof, see Proposition 6 of [1]. In
fact, we may show further that the consecutive polynomials xn+2 − Tn(x) and
xn+1 − Tn−1(x) in the sequence {(x2 − 1)Vn(x)} = {xn+2 − Tn(x)} have no
common zeros in (−1, 1). More generally, we can prove the following.

Proposition 5. Let n be an integer ≥ 2. For m > n, let

fm,n(x) = xm − Tn(x).

Then fm,n(x) = xm − Tn(x) and fm−1,n−1(x) = xm−1 − Tn−1(x) have no
common zeros in the open interval (−1, 1).

Proof. Consider the polynomial

Fm,n(x) := 2xm − (Tn(x) + xTn−1(x)) = fm,n(x) + xfm−1,n−1(x).

If fm−1,n−1(x) = 0, then

Fm,n(x) = xm − Tn(x) = xTn−1(x)− Tn(x)

= (1− x2)Un−2(x),
(16)

and if fm,n(x) = 0, then

Fm,n(x) = x(xm−1 − Tn−1(x)) = xm − xTn−1(x)(17)

= Tn(x)− xTn−1(x) = −(1− x2)Un−2(x),
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If fm−1,n−1(x) and fm,n(x) have a common zero in (−1, 1), it must be a zero
of Un−2(x). But no zero of Un−2(x) satisfies

fm−1,n−1(x) = 0, i.e., xm−1 = Tn−1(x).

In fact, the n− 2 critical points of Tn−1(x) are the zeros of Un−2(x) in (−1, 1)
and Tn−1(x) has the values ±1 at those points. But the absolute values of
xm−1, where −1 < x < 1, is strictly less than 1. �

Remark 6. From many numerical computations, it seems that, like Vn(x) in
[1], all the zeros of En(x) are real, and n − 2 of them lie in the open interval
(−1, 1), while the remaining two are large real numbers with opposite signs.
From Corollary 4, we see that

(x2 − 1)En(x) = 2xn+2 − (Tn(x) + xTn−1(x))

= fn+2,n(x) + xfn+1,n−1(x),
(18)

where fn+2,n(x) and fn+1,n−1(x) are polynomials defined in Proposition 5.
By Proposition 5, the polynomials fn+2,n(x) and fn+1,n−1(x) have no common
zeros in (−1, 1). We now conjecture that the zeros of fn+2,n(x) and fn+1,n−1(x)
interlace. A lot of computer algebra computations lead us to believe the truth
of the conjecture, but the author does not know how to prove this. If this is
true, we will have the proof that n− 2 of the zeros of En(x) lie in (−1, 1).

From Proposition 6 of [1], we see that the largest real zero of fn+2,n(x) and
fn+1,n−1(x) are between

(
√

2)n−1 − n(
√

2)−n+1 and (
√

2)n−1

and
(
√

2)n−2 − (n− 1)(
√

2)−n+2 and (
√

2)n−2,

respectively, and we may check that for n ≥ 6,

(
√

2)n−2 < (
√

2)n−1 − n(
√

2)−n+1.

Since both fn+2,n(x) and fn+1,n−1(x) are negative on the interval (1, (
√

2)n−2−
(n − 1)(

√
2)−n+2), and positive on the interval ((

√
2)n−1,∞), the largest real

zero of En(x) must be between

(19) (
√

2)n−2 − (n− 1)(
√

2)−n+2 and (
√

2)n−1.

In the next proposition, we obtain a sharper bound for the size of a large real
zero of En(x). In fact, the real zero rn in the proposition below seems to be
the largest real zero of En(x), and for example, with n = 20, compared with
(19) and the inequality (20) below,

(
√

2)n−2 − (n− 1)(
√

2)−n+2 = 511.96 . . .

<
√

3 · (
√

2)n−3 −
√

3 · n · (
√

2)−n+3 = 626.97 . . .

<
√

3 · (
√

2)n−3 = 627.06 . . . < (
√

2)n−1 = 724.07 . . . ,

and the larger n give sharper bounds in (20).
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Proposition 7. For any integer n ≥ 8, there is a real zero rn of En(x) such
that

(20)
√

3 · (
√

2)n−3 −
√

3 · n · (
√

2)−n+3 < rn <
√

3 · (
√

2)n−3.

Proof. For n ≥ 2 and x ≥ 1, it can be easily checked that Tn(x) < 2n−1xn and

so, with (18) and x =
√

3 · 2n−3
2

(x2 − 1)En(x) > (
√

3)n+221+
(n−3)(n+2)

2 − (
√

3)n2(n−1)+
n(n−3)

2

− (
√

3)n2(n+2)+
n(n−3)

2

= (
√

3)n+22
n2−n−4

2 − (
√

3)n2
n2−n−2

2 − (
√

3)n2
n2−n−4

2

= (
√

3)n2
n2−n−4

2 (3− 2− 1) = 0.

We now find a near-by point x to
√

3 ·2n−3
2 satisfying (x2−1)En(x) < 0. Using

well-known inequalities
√
x2 − 1 > x− 1

x for x > 1 and (1− z)n ≥ (1− zn) for
n ≥ 1, 0 ≤ z ≤ 1, we have that for x > 1,

Tn(x) >
1

2
(x +

√
x2 − 1)n >

1

2

(
2x− 1

x

)n

=
1

2
(2x)n

(
1− 1

2x2

)n

≥ 1

2
(2x)n

(
1− n

2x2

)
,

and so

(x2 − 1)En(x) < 2xn+2 −
(

1

2
(2x)n

(
1− n

2x2

)
+

1

2
(2x)n−1

(
1− n− 1

2x2

)
x

)
= 2xn−2

[
x4 − 2n−2

(
x2 − n

2

)
− 2n−3

(
x2 − n− 1

2

)]
= 2xn−2 [x4 − 3 · 2n−3x2 + 2n−4(3n− 1)

]
.

We now consider the polynomial in the last

en(x) := x4 − 3 · 2n−3x2 + 2n−4(3n− 1).

Write

x = xn :=
√

3 · 2
n−3
2 −

√
3 · n · 2−

n−3
2 .

Then

(21) (x2
n − 3 · 2n−4)2 = (3 · 2n−4 − 6n + 3n22−n+3)2 < (3 · 2n−4 − 3n)2,

where the last inequality can be easily shown for n ≥ 8. So

en(xn) = (x2
n − 3 · 2n−4)2 − 9 · 22n−8 + 2n−4(3n− 1)

< 9 · 22n−8 − 18 · 2n−4n + 9n2 − 9 · 22n−8 + 2n−4(3n− 1)

=
1

16
(144n2 − 2n(15n + 1)) < 0.

This completes the proof of (x2 − 1)En(x) < 0 at x = xn for n ≥ 8. �
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The Chebyshev polynomial of the second kind Un(x) have a well-known
factorization over Q (see p. 229 of [3]) and Un(x) is reducible over Q for every
n ≥ 2. However En(x) seems to behave differently. If n is an even integer,
then the leading coefficient of En(x) is 2, and so it follows from Proposition 1
and (14) that En(x) is in Eisenstein form with respect to the prime 2. That is,
En(x) is irreducible over Q. The case when n is odd is not obvious to decide the
irreducibility of En(x). It seems that En(x)/(2x) is irreducible over Q by many
numerical computations. This remains an open problem, but the coefficients
of En(x)/(2x) does not give enough clues to the irreducibility. In fact, we may
compute the coefficients as follows which is also of independent interest.

Proposition 8. Let n be an odd integers ≥ 1. Then with n = 2m + 1,

En(x)

2x
= x2m−

m−2∑
r=0

(−1)r

(
m−1∑

k=r+1

(
2m

2k + 1

)
(2k + 1)(2m + 1− k)

(2m− 2k)(2m− 2k + 1)

(
k − 1

r

))

x2m−2r−2 − (m + 1)

m−1∑
r=0

(
m− 1

r

)
(−1)m−1−rx2r.

Proof. Let n = 2m + 1. Then by (13),

En(x)

2x
= x2m −

m−1∑
k=1

(
2m

2k + 1

)
(2k + 1)(2m + 1− k)

(2m− 2k)(2m− 2k + 1)
(x2 − 1)k−1x2m−2k

− (m + 1)(x2 − 1)m−1.

We use the binomial expansion

(x2 − 1)k−1 =

k−1∑
j=0

(
k − 1

j

)
(−1)k−1−jx2j .

Then with r := k − j,

m−1∑
k=1

(
2m

2k + 1

)
(2k + 1)(2m + 1− k)

(2m− 2k)(2m− 2k + 1)
(x2 − 1)k−1x2m−2k

=

m−1∑
k=1

(
2m

2k + 1

)
(2k + 1)(2m + 1− k)

(2m− 2k)(2m− 2k + 1)

k−1∑
j=0

(
k − 1

j

)
(−1)k−1−jx2m−2k+2j

=

m−1∑
k=1

(
2m

2k + 1

)
(2k + 1)(2m + 1− k)

(2m− 2k)(2m− 2k + 1)

k∑
r=1

(
k − 1

r − 1

)
(−1)r−1x2m−2r

=

m−1∑
k=1

(
2m

2k + 1

)
(2k + 1)(2m + 1− k)

(2m− 2k)(2m− 2k + 1)

k−1∑
r=0

(
k − 1

r

)
(−1)rx2m−2r−2

=

m−2∑
r=0

(−1)r

(
m−1∑

k=r+1

(
2m

2k + 1

)
(2k + 1)(2m + 1− k)

(2m− 2k)(2m− 2k + 1)

(
k − 1

r

))
x2m−2r−2
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and

(m + 1)(x2 − 1)m−1 = (m + 1)

m−1∑
r=0

(
m− 1

r

)
(−1)m−1−rx2r.

These completes the proof. �
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